-
AD-A141 5681 SOFTWARE SUPPORT FOR FULLY DISTRIBUTED/LOOSELY COUPLED 1/3
PROCESSING SYSTEMS. . (U) GEORGIA INST OF TECH ATLANTA
SCHOOL OF INFORMATION AND COMPUT.. P H ENSLOW ET AL.
UNCLASSIFIED JRN 84 GIT-1CS-82/16-Y0L-2 F/G 9/2 NL

M

B St Il e el e B et B B e) Wl) d LR el S A A - gL SNL AR MR AL o 4 and
RO A A AR S AW A A ACA LA L E A ".‘,7.-..

‘v s A SR WA, ik, at

‘.

!
:

v

M.

v
’.’.

-"-'

B

P
RPN

-

%
SO eFS

B,
N~
[

w

2

Il llis

FERFEEE R
=a
S

|

EEER

rr
r
Fe

==
: mn_w
o

' _“'-‘l‘.l'll.~

=
oo

B

-'l" »

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A <,

-ler. VA,
g -

r

7

',
L

-r"r"r '.’l,

. « s .
s % S L
ey

“‘..'

-:.l." o

el

’

LA . " . . . \ R Wy e A el e
ACIACY &, ", RN TR

LI e ‘,:",'-;_'-‘ Ny
B L)

o

Lk 4 !

...

o RADC-TR-83-238, Vol |1 (of two)
‘ Final Technical Report
January 1984

AD-A141 507 b

SOFTWARE SUPPORT FOR FULLY o
DISTRIBUTED/LOOSELY COUPLED
PROCESSING SYSTEMS -Appendix =
- Selected Papers ol

' Goorgia Institute of Technology

Philip H. Enslow, Jr.; N. J. Livesey; Richard J. LeBlanc g
and Martin S. McKendry -

.‘1'1"0'!‘:" P A
R RN - FORICRIRE
a~

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- § _DTIC

L
L B
o 4 2
,A‘. .
't

MAY 2 31984 '3

ROME AIR DEVELOPMENT CENTER s
Air Force Systems Command E
Griffiss Air Force Base, NY 13441

P A Tt it Bt et A T
.. \f-. B N AR . T ““V‘ l~‘v‘\! $_-\—‘“ e ‘ Aok vr-m-,-q*-—v\"-*r -

-

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-238, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: %‘m/z % o

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER: % a. EE/

JOHN A. RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization, v;}{J
please notify RADC (COTD) Griffiss AFB NY 13441. This will assist us in c.‘;t-:;;
maintaining a current mailing list. g
N
LS
Do not return copies of this report unless contractual obligations or notices t?hfi
on a specific document requires that it be returned. v @
T
RN
S
)
S0

I RIS e e T e e e N T T T L N N L T

N I AL T AR '.'.'v"'.‘;.'.‘l';';..;‘;;' aATy ; K \J.A. s J“L\A“ll“{umf-ﬁ_ .h.\h}. u.{;::!.;:n ;:)-“.A\

v.'.r'r_rv_r‘ﬂ.
. S e

4
. UNCLASSIFIED
': SECURITY CLASSIFICATION OF THIS PAGE (When Dlll‘!nlOICd)‘
S REPORT DOCUMENTATION PAGE BEFORE COMPL EtING FORM
N 1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
s RADC-TR-83-238, Vol II (of two) ALy £
4. TITLE (and Subtitle) S. TYPE OF REPORT' & PERIODO COVERED
N SOFTWARE SUPPORT FOR FULLY DISTRIBUTED/LOOSELY | Fimal Technical Report
N COUPLED PROCESSING SYSTEMS - Appendix - 20 Aug 81 - 31 Dec 82
A Selected Papers 8. PERFORMING OG. REPORYT NUMBER
3 GIT-ICS-82/16
- 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Philip H. Enslow, Jr. Richard J. LeBlanc F30602-81-C-0249
. N. J. Livesey Martin S. McKendry
\.' 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
" AREA & WORK UNIT NUMBERS
aF Georgia Institute of Technology
X 31011G
School of Information and Computer Science
30332 R2440101
Atlanta CA
:‘ 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
k2 Rome Air Development Center (COTD) ,fﬁﬁgﬁ;{ojfﬁﬁs
[Griffiss AFB NY 13441 220
: T4, MONITORING AGENCY NAME & ADORESS(if different from Controlling Oftice) 15. SECURITY CLASS. (of thia report)
N UNCLASSIFIED
Same
¥ tSa. DECL ASSIFICATION/ DOWNGRADING
] SCHEDULE
) N/A
o 16. DISTRIBUTION STATEMENT (of this Report)
. Approved for public release; distribution unlimited.
i
: 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difterent from Report)
a0 Same
M
2 6. SUPPLEMENTARY NOTES
: RADC Project Engineer: Thomas F. Lawrence (CcOTD)
-
; 19. KEY WORDS (Continue on reverse side If necessary and identity by block number)
- Distributed System Support Capabilities
j Fully Distributed/Loosely Coupled Processing Systems
j Software Development Tools
J
20. ABSTRACY (Continue on reverse side If necessary and identify by block number)
- The development and operation of very loosely-coupled distributed
- processing systems presents several new challenges. These "Challenges",
> or differences from the techniques applicable to centralized systems,
: result primarily from the environment that is involved -- a multiplicity
y of logical and physical resources that are very loosely-coupled, a highly
) distributed and decentralized control system, and the autonomous and
(] asynchronous operation of the various components. This report identifies
-~ roRM
. 00 147 COITION OF 1 NOV 68 IS OBSO
‘ v s W73 Lere UNCLASSIFIED
" SECURITY CLASSIFICATION OF TNIS PAGE (When Deta Entered)

%

7
R TR P R R e S F oy O
S A IC AR I SO R RE I LT)

LA S LA LR LA SARLSL HAN
Qw':-.j-."_-.‘_-.':\.":-.f-.’r\\':s" T
‘- ‘ Q.. ‘. \.. \“ ..-\ \-(

g 8 £} e B}

UNCLASSIFIED 2

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

A

/the system support capabilities necessary to support the design, analysis,
implementation, operation, utilization, and management of fully dis-
tributed, loosely-coypled, data procéPsing systems. These system support
capabilities are divided into three categories - software development
support tools, distributed system design facilities, and operational
support capabilities, Selected support capabilities are described,
together with the rationale for the services that they will provide.
Estimates are presented for the resources and facilities required to
design and implement selected support capabilities. Also provided is a
development priority for the support capabilities, Tke appendix to the
report (Volume II) contains several papers providing in-depth discussions
of various support capabilities and their features.

UNCLASSIFIED
BECURITY CLASHFICATION OF Tu'® BAGE(When Dets Ente

[t B AR

€
-
~

o sy e .
v e ‘e
TR s

‘‘‘‘‘‘‘‘‘‘‘

' 1"‘)“-’ -"‘:“
St SRS
Cate
L Page 1ii ol
LGN R
A
A RO
0 ACKNOWLEDGEMENTS e
> : 5
{. Support for the preparation of this report and most of the research on)
' ’.- "f‘
WA which it is based was provided by the U.S. Air Force, Rome Air Development el
~. S
;‘:':- Center under contract F30602-81-C-0249. 1In addition, general support for the ::-: -
AN k‘:-"_n'\
"_‘;j.; Georgia Tech Research Program in Full Distributed Processing Systems has been N
; provided by the Office of Naval Research under contract N00014-79-~C-0873 as @l
-~ N
' :4_.2 part of the ONR Selected Research Opportunities program. Dr. Enslow has also :.'_.:j
»Z:::: received support as a consultant in the area of software tools for embedded r'_-l::-é
-h *- --'.'-"‘
\ﬂ distributed systems under RADC contract F30602-81-C-0142, ®*Distributed Proces-
\ sing Tools Definition Study," with General Dynamics, Data Systems Division, l_n!;
:{; ’ Fort Worth, Texas. ::':j::.‘
b 4‘.: ™ '..-"; 4
Ry AN
Y e
‘f\$:'.ix
& Accession For s
" i KA
ot NTIS GRA&I s
KT DTIC TAB R
‘J'ti Unannounced | ’_'_\'
"'f. Justification |]
\-"‘-4 By
O Distribution/
:,._‘:: Availability Codes
AN Avail and/or
) Dist Special
:Z:::Z: ,
g ®
‘. --{
e

CSag:
A4,

: oK

b

PRy}t

rh
-,

Y ,:a".o".' o
I’

MY

LI S R T SRS L L
S . R . . SASAREAR L REN SERAS
. O R . SN T LT e LN
EAGSAL N . . . e . AT, AR

NN LW NN AT

LIRSS
avats fara ey T e e fa s e e e

— - v - ~ R I T T P L e T
F“‘_.-“.“. RAACHACRACRA S A b Bl Wi B S A e At LAt G i i N I A T T o w o O FTFTP I SITITETR TR TG TERE T T ..’_'. .

P T T TN
-

‘1 Page v
b VOLUME 2

N TABLE OF CONTENTS

APPENDIXA EmeDING FILE SYSTmS 00000 000G QEOEOIOPP IS OB 0000000806000 0000

i

.1 Intrcduction [ENNNNEFENENERRNNETER RN NENNRENEINENN NN RN N R NN N NNENNENE NS

.2 General Problms 9 00 00F 0000 CPQAOP 0000000008 C000000C0P000COCRCESIOESIITOTS
.1 Nmng and Addressing 000 000000 0000008000 000000C00000800000000008
'1 File system Namins P OO OB EPSO IV OIS RNPNIOPCECEEONPNESEISOEONSOEOPIOSIOSITOTPOITIOITS

.2 Aliasing 0800000 00060000000 00000 00CE0PI0000008000800s8006006000s

.2 File storase stl‘uctu"es I FEN N EENNNENRNENNNENNNXRENEN NN KN NN NN NN NN NS
.3 Distribution 0........l.'....0.‘..'...0.'..'0.l.'.............l.
.3 SOlutions B O C 0 0000800000 CO PSSO POCOOPRO0OCPROCOCEPIBOISEOEOITSTOOCEOSECEOISIICOCSEOIOGSEPOITOIODS
.1 A Domain Structured File SyStell cccccecscctscvscssocccsssscccnne
.2 Description and Implementation ceeceecesvocssccsescccscscsscccses
.3 Usirlg Domains IR FFEEENE NN NN NN N NN NN NN I NN NN N NI NN NN RN NN NN RN NN NN

PO K
S0

L

ol o]

-

. x.
OARAT,

-t b mh b wh b b = b b b -
VOO I112WOO0OO0OMNIFEVN= =

-;'b‘ .u Rules OO0 QRO OO OCNOOTO PR PPN N OO IRPREOEOCOROEPOERIOSIOEOESROSIPOIRNOSIOSEEOETOPDS
.{': .5 comnd files 0 00 0P G0 000000000 B 000 0C00SSORPOCECEICOIBOIOIGSROISTIOOEISIDYS
:‘ .4 Unsolved Problems 0 000 0000000000000 000000000000600600000800000 0000000
:\ .1 More Binding € 000000 00000000000000000000000000000000000000CROIOIOS
(‘.“ .2 variables @0 000 S SSOUTI TR DEPESNODOO00SCINICIOECEOEEEGEOESICEOOISOPIESIOIISIOIBSIOITSETDS
v «3 Command Language Functions ...cceuceccccccccscscscsccscccssscsee
:"IJ .u on-condition P00 0P 000000 00CRCE0B 0000000000 0CECOEECESIROEOISIPROIOSTESBEOEOIOSTOITOIETS
{-{f 05 Conclusion © 0 P 0 000000000000 00000000 E000E0000000000000000TCGCIIOIONIOS
:::: REFERHCB 00 000000 00000000000 0000000000080 00 000000 CELLCCCCPRERPCEICESIOIBIOIOGGSIOCEEOIOIDS 20
-."‘ APPENDIXB COWD I“TERPRETERS 00 0 50600 0000608000060 C000000C0IEIBNCEOIOSIOSIOIOIOIOSIOIRICOGS 21
5 . .1 Command Interpreters ..ccececececescvcscscesssscscscssssscccssccscncs 21
vl .1 Compiling Versus Interpreting cccceececcssssscscsscccssssssscsss 21
7 .2 Command Line EXeCUtiON .ecevececccssassoesosscscscssscasssssasees 22
;ﬁ «3 An Aside - Processes and Processescsecccoccocccvccsccncses 22
'\ .ll AStack Command Inte!'preter 0000080000008 0000C0C0cC0t0RORQAOIRCIEEeEEOT0TS 23
" 5 Canputational POWEPr cccecscccvesccsscscnsvsccscssssccsascsnsasnssse 23
B .6 Elap8ed TiME ccccssecscccccssvsnconosnssvasssccsccsssscccossesscs 24
_:'J 07 Over‘head €06 0000000000000 0000000600000CIIteEssossssssocsocsconsossose 2'3
%j .1 COmnd Execution (I FY YN NNFEENENNWNNNNNNEENNENNNNNERSJNN RN RN NN N] 2“
‘:3 .2 Command Interpreter Overheadceccescsccccscccasscncacs 2H
Ay «3 Inter-process Communication Overhead seccccecocccaccccosseees 25
—— o4 Total Overhead ..cceccecceccsscscsccsssscsscoscsssssssccsscse 25
g .8 smry P -]
: «9 A Distributed Command Interprater tecessssssssssssssssssasesssse 25
1\{ +2 Process Graph COmMP1lation ..eececsccsccccsecsscsscscssssasssccanase 2T
. «1 Process Graph Language ecccecseccccccccessscssssccsescscsosssccccs 21

q"."l .2 Process Gl'aph Language Crammar .cccccesssccoscscccossscscccccsces 27
'1 Proce’s Graph KRR XXX P F YRR NN N R NN NNNNNENRENERNNNNNNXNE N 30
o2 Type Aﬂﬂiment eeeescsesesessssensasvsssssssssssssssssessss 31

\s 03 Edge P S 0 086060000 0000000060000600000000C¢0C000CR00GCPRE0CBRRCECEROOROIROROTTN 33

.5.‘ .u Precedence Graph IFXEXEEEXEEE AR NN NN XN N NN NN NN NN NN NN NN NN] 35

‘.'.“ «5 Statement List .ccceccceccvcanscasasssescscscssssccosccscsses 35

A :: 06 Concatenation .cececvcecscccccsoscscscrssscsconccscsnsssssscsss 35

f o7 Concur!‘ency 0000 000000000000 0000800000000080608000000 0000000 36 "

S 08 Procedure Call 000000000080 06000 00000080000 00800000CGRRCRGCRTSTSEETSTS 37 -",_-:.--‘.
'.\ '9 Choice 000000000 00000006000 000800600009C6000000005000000000000TGCTDS 37 ;‘:.‘-;*
e CRANC
L4 LR
" T 8L

)
Y
. :‘ .
)

el s
.

. gy
. . 5
s S ‘

. .
PAPLIRERY
AT

[] . O.
s 8 - hd

»
P
b

010 Ite!‘ation 9000000006000 000 0000000008000 00000CCCCCCEOIESISIOIOENOIEOSEIEIEOS

«3 Translation from Task Graph to Precedence Graphccecccescees

APPENDIX c PRONET 9006000000000 00800000 0000060000000 0300000000000000000eH

.1 Introduetion S0 0008000003008 000000030008008 000000000068 00000600000°CRGIITS

.1 Prosramming EnVironments G000 C 00 000800 O OBEVERONVNSOEBOOGEETOIOSIOIOBDBOLETILES
+2 Logical Communication NEtWOrKSceccecccccscosccsvocsccnssonocs
.2 The BaSic Features Or PRONET G0 0 80 0 000 S0 PER TSRO0 PSEESESIOCOIRPROPOINOSITES

+«1 The
o1
o2
.3
«2 The
.1
2

oA
5
.6

.3 DisSCUSSiOnC.......C...........I..‘C....'...Q....“....l.'...'.

Features of ALSTEN .ecceccccccsccascccsscacassoscoscsscncssns
Message Transmission Operations ..eeceeccccesccescsccccasccca
Ports for Message TransmiSSion .ceeccececcesscsssccsaccosossns
Process-Defined Events c.ccececcsccaccasscsscccosscccascocss
Features of NETSLA ..ccceevecscenscsscocccscscocasacsnscncse
An Overview of Network Specifications ccceeececccccccccssees
Event Handling ® 0 800000000000 CORORNNNNCERONIPPNOESEOOTEEIRIROCROEETCTTEDS
Simple ACtivities .ceeececccceccsvoacescsscosccscrssscscsans
Structured Activities .cccevecsescsccsccsscascccscaccoccrons
A Simple Mail SYStemM ceceesccrscosscsscossoncossovssceascnses
Event Clause EXeCULLiON cscecccscsasnvsccccnscosssascosnscsacs

REFERENCES 9908060006000 0080 000 C0000 P 000000000000V I000CCCRCECCEOIOITEENSIOIOIAIIVPGETOIEDOPTES

APPENDIX D FAILURE HANDLING IN PRONBT 0006000008000 8000060000080P0c0RCOSCETTTE

o1 INtrodUCtion .evieevececrscnccoascccasosossssonsssrnasnoscsssscnsss
2 Definitions of Failures 00000000 000cas000P00000000000sesestsctsoscse
«3 Buffered Communication and Failures ...ccceececsvcccecescsncssscenss
.4 Failure Handlins 00000000 0000000000000 000000000060000000OC0COCO0RGCEEOIOIOMIETS
+5 Permanence and Externally Visible Behavior «ccceecceccscoscscsccess
.6 Partitioning Failures 0GP S G0 0 000 CE UGN CEODEOO00ELOESIOSNENOSOEEPOSEOIEUETESPGOSETOTTOTTS

'7 sumary 08 0000000000000 00000000 000060000 00¢C000000080C00CROIOGOCOIOICOTOITOTS

REFERENCES @9 00000000 0000000000000 000000 000000000000 0C0C0C0OCRRGCEERNROCOROEIEEOIEOIOCECRTBSETSE

APPENDIX E SOFWARE FAULT TOLERANCE 00909000 ¢EPB PSS CERPOCOISIEOSIOEOIOSORIOBDOIOITRS

.1 INTRODUCTION 0030000008 006¢0008000 00000000000 0CQRERNCEOVIRSIAEcCEOROIOROIGCGSAEOIOIEOGEESDS
.2 SOHE TERHINOLOGY G @00 08 000000800000 3000000930000 080000CEsOCTEPOSTIOSEEOIOTIOAOAQOcCTOTEOIPOISTOES
«3 METHODS FOR SOFTWARE FAULT TOLERANCE secccocossccsscsccscsossoscose
.1 Error Detection $ 0000000000000 00000000000000c000COOORCOIOIOIOIOIOIONIGOEOGGTS
.2 Fault Treatment 00 0020000000003 0000800000 0000000000000 0000000000
o3 Damage ASSESSMENt ...ceeccceccesocssscasosssssssacsssssesncsassos
.4 Error Reeove!‘y 0 00 0000000000000V 00000000000000G0000OCO0CCGCOROGIOISIIOGIRTITDOTS

38
38
43
43
u
uy
u5
16
46
48
50
53
53
55
58
61
62
65
65

67
69

69
70
T
73
(2
T4
75

T7
79

79
81
81
82
82
82
83

':;:.‘ ‘u THE RECOVERY-BLOCK SCHM otoogoOC-"ogonool.uonuugnoaoooo-...-o.ouo- 83
:4.":: o1 Acceptance Tests 9 00 000000000000 00000a0000000CEOCOCOIOSOIOEtCOIRRROIROIOITOBTETS 1)
i\{\ -2 The Recove!'y Cache 200060000000 000000800000CRVCETGSIROCEOEROCCERNOIABOEOEOTS Bu

«3 Error Recovery in Cooperating and Competing Processesccco.
.u The DOﬂinO Efrect 00 900 006006080002 g0008 000000600 PROORPROIGOEROEOEGCEROIEOSOIEGOSEORTOES
‘5 Reooverable “onitor' 080000 G000 200000008 C0COICOITIOSAROONOGEOOIEOSTPOIBSESESETINIPOSEOETDRPES

85
86
87

KS
1:? .6 Effects on Software COmMPlexXity ..cccceccecscescccescsscsscsssssns 89
Y 7 Problems in Implementation for Distributed Systems 89
‘\':-' 05 OTHER BAC“ARDS—RECOVER! Scnm 000000,000000 806060800000 ¢€006006060600 00O 90
E:; .6 UNIFIED VIEW OF PROGRAMMED AND AUTOMATIC EXCEPTION HANDLING 90
“'i .7 DIRECTIO"S I“ RECB"T RBSBARCH 0650900060000 880C0CEIRGESIOCEOINIIOIOGIOIGCEOIOIGOSTOETETOETTIEO 97
:EE RBFERE"CES 0 000 0008000000800 00000000000 305000000000 C000C00CRI0R0CCCIVPIOIOEEOEON"E 100
N
N
o

~l

L e -
- \ \ b.
ok '.'.1."\.‘_'. =
-\'-\". 'G_'..- RS
\.'.-A_‘\hs‘fn.'x"\‘..\.ﬁ" LY

O

. Page vii

APPENDIX F QUEUEING NETHORK MODELS S0 90 P00 PERSPPOCRNORSEBOOEOORESQIOOISIEROEOETISIOOESTDY 103

.1 IntrOduction 90 00N OB D 0000000008000 0C0CESEOTINTIOLRNEINIOENRIEOGISROIESIOEOIOITSTTOEDS 103

(.2 Queueins Net"orks P 0 00 0 0 0P 00O CO RO SO SOQROPROSECEI OISR OBEOSORSISIOSEOOPNDSIEOEPOSTTOEPOIEDIDN 10”
"..' '1 38810 Theory P E P00 0P OCTO OB I 000 Q0000 OPEEROCOPOENSCOBNEIESOESSISIOEOEISNPIOSIe 10)"
tH «2 Solution TechniquUes ..ccececescsncsasscsssscscsrccsercccsescscse 106
\::‘ .1 Emct Analysis P00 S0 0000V SISO RPEB OO CRNEPECECEOSO OB ePCCeses O 106
:A «2 Operational AnalysSiS .cceeececdoscccscesscscasscsssssssnccsss 109
.3 “\mel‘ical ARSIYSiS D 90 00060 00 QSO O OO TP OO0 E NS PO0 QSO OGSSOOETETIS TSNS 110
.4 Approximate AnalySiS .eeccececcecssccsccacesscsscasscsacccss 111

.,;I .5 smulation ® 0 0 00 00 08PV CI TS NSO ROB0 0000 SOCERBEEIBSINOENINSEOBROTOIBSIEONTDS 11“
::'- 03 Qlleueing Network Packases 6006000000000 000000000000PPSSICEOIOVECIROEEISITISTES 1118
{:: .3 Hodels 000800000000 R PO TNIBEINCE 0 S CERB 00000 EDPCEESOISEONIOIPIBPIEOEOIETISTPOOIEEOCSTUVSTES 115

’.‘ .1 some successrul Hodels P 0 000 O 0 90 EOOOS S0P A SO O SISO OE S PEPOBSOeePe 116
a2 .2 Application to Distributed Processing SyStems .ceeeecececcececsscss 123

. REFERENCES 00 05080000000 0000 000002000000 008 3000000000000 0CE0CCOCET0CVITIOSISTIOIOROPOIEOSYDEY 127

~§j APPENDIX G A DISTRIBUTED COMPILER ceecevcocosssosccscccssnssassscscsecsss 131
f:§ «1 INtroduction .ceeecesecccascccscrtcattcncossccscecascscscsssecassss 131
‘\“ 02 The Compile!‘ Q0 000 2006000000 T0E0 00 G008 0000800 00000000V 0CCERSBIESIOSIOSIROCSETOCITITLTS 132

o1 The LangUage ..cceecececcccessnsccssacsassssaassscsascsssssccsssnses 132

oo +2 Components of the Compiler ..ccceececcccsccecccccsssccasncsasess 132

'3 o1 Lexical ANAlYZEr .cceceveevesscsccsncascssssssssssssasnssnes 133

j(; «2 Syntactic ANAlYZer ..ccccececessccsccescsscssccsvsccvessscss 133
_\-‘! «3 Semantic Amlyzer 10000009 000006000006000000800000000000c00000 13"
N «3 The Distributed Compiler ..cecveecccesssescscscsssssanssacsscsacs 13U
” o4 Single-Pass Version ..cceceecesccacccscscsscsessasssscsccccscsnse 138

\ e3 The EXperiment ecececececcccosccsocsccsccscoccsccsssccssscsccsscssssee 138
.{-" -4 Interpr‘etation Ceeesees0e00000000asnsssassstcssncesssssassssssssses 139
‘l‘.. 05 conclmion 0 0000000000 000 etNEteretectesstserencesssiotosesosnessscsoe 11‘1

.6 Tables and Fig‘lres G 0 0060000000000 000C00C0CVPRPPOSBIPIOTRERCESOSEITVGERITTOOOSIOIOBSIEDINTOCIQLDS 1"2
REFERmcES G008 0000000 00000000000 800000 00000000 0000600080068 00000000scosoeoe 1”6
APPENDIX H CLOUDS S0 29 0L P0REB 0000000500000 000000008000C0ROQILOIOBOEOIEOETPTORILITTS 1”7

<

<y

::' .1 Introduction (A AR NN NN RN NN NN NN NN NN N NNNERENNNNENNENNENNNNNNENENNNN NN 1”7
"q‘.: .2 Goals .‘Q........‘..O..l.......'.......'.l‘.......'...l........'..O 1“8
j‘. .3 Rmuirements [E AR ENERENNNNNNNNNENNXNNNNNNNNNNNNNNN NN W NN NN RNNE NN N 1“8
o) o1 Data MAnAGEMENt «...ccceeeaccsescecsecracsesacncascasescsassnses 148
-_,. «2 Resource Allocation 0000000800008 0000 0000000000000V RIOIBOEOEEOROROCEDSTRTDS 1“9
- ol Architectural Directions ...cceeccecsecsasccccccsccssssccscecsccces 149
':' .1 Data mnase'ent LK BN B BN N BN B BN N B BE A BN BN BN BT R RK NN RC R BN BN N R N N N IR BB R BN BV RN N BN MY B N N NN 150
o .2 Resource Managementeceeccceeeossssssccaccosssscscossasase 151

.5 smry (A A B EENNENENNENNENENENENNENNENNENNENNNENNRKNNNNNNNNNNNNNINIENERNNN NN ’5’

REFERENCBS G0 OV 0002000000 000008 00000000030 000C0CD0002C0C0CEC0CQEE0O00COCOCIRAOIEONROIEESEOITONINTOESEOTOYDYN 152
APPBNDIXI REPLICATED DATA GO0 G0 0000000000000 00000040000600000RORFROCCRIGORIBTBIGSGTES 153

- o1 INtroduction .cececeecsocceccecsccrcaccccccassasascsosossasanncenes 154
_': 02 Envil‘onlenf. and Applic&tion DOI&inB 0000000 rcsc0s000 s caccrsssaqe 155
+3 General Suite Structure ..cccceecccscccscscccscssassscscssccsscssas 156

.1 Alsorith. oveniew B 0000000000 0000000000080 0C20000C0CCIOIOIIOIOROEOSIOETOSTOQTTES 156

. «2 Details Concerning the Base Algorithm and Resolution Tables 157
. 3 The Base Algorithm and the First Resolution Tablecceceee.. 159
.$: .“ other RQBOlution T‘bl‘a 99080080600 0000008C00000s000c8s0a000000000000 165

NS

.....
......

'l
L)
A,
LN
’h‘."‘..' T PR !.'--,- ! \: 4_':.' A -.'.-."\;_‘4.»‘-‘_‘. .'.I'.'_‘.".".,'.._\ _'..;.’-..' x PRI - A Ve et -
* . %, e, O, O - D) . - . et m Ve . e YT,
: QST NN NI SN N X
»

4

Oy~ R
s -I.':s .
a%a ,.’L‘L L't

A

a‘ VIR
PN A

o et
4, 1,4

s

“

)
R

. Oy v’..n‘ l“/ c"
RLPLOAY

ot

[
A DY

)
L

Ly
A

(4
>

(]

l‘n{~
Fd

)
Oy
. .
s A &

.
.
s e

0

(g
a

..
LA A
AAARS

,h-f.. .
b s };&

“yar -

g

|
. b
e

s

.A.

I NN

F Y A .‘u;’
AR

e
“
d

A)'

Page viii

05 variations LI I B BN BE AU BN B B S B BB N B B RN R I B ORC K BE BN BN BN BN B B BN BN BCRE B R BN B BN R BN BN OBE BXCBE BN BT BN B BR BE S BN N N J
«1 Sending Individual Changes Immediately ccceccecocoscscssscaccsns
.2 Specifying Conflict Strategies for Ordering Update Operations ..
.3 Functional operations ' EEEREEEEERNNNIN NI NN NI NN NI IR I AN NN A NN NN
.u Atomie Changes G 00 S 9 00000 CCODPCO0CS OSSO OO000 0000060006060 00600000ss0OSS
.5 Limiting the Size of Synchronization Setsccccccceccocccccae
.6 Online Inclusion/Removal NOdeS ccoccscesovsconcrcsocccscncsvoses
.6AFoml Model Of the Base Problem 900900000 CC00CQCOQROESSOEIEOPOINOIOONOIEOTOSIPOTTIBIDIOO
.7 Proof of Correctness of the Base Algorithm and Table (3=1) cccecees

08 suma!‘y 99 0000000000000 0000000008000 000008000800 ¢000006000080800000000¢

REFERENCES 000 C 8 G000 0000000000000 0RGAETEE0E000000000C0ESC00000CCECEQCRIIIIIBIETYS
APPENDIX J ATOMICITY IN OPERATING SYSTEMS ceecevccvoscevcosscasssccccace

«1 INtroduction .cecececcecctcessccccscransssocscosssrasaccescescscsscs
.2 Atomicity Requirements ..cccecceccecvecsccecsssceossscoscssssscncacne
+3 System Primitives for Supporting Atomicity .ccceccecccccccscccccnass
o1 System Model .ceeececcescsacestsscocsaossncssscossssscassscsscscnne
«2 Action Creation, Use, and Termination scececsccvssccccccccacccas
«3 Action Synchronization Facilities ..ccceeccccscccscescscoccsccone
.4 Action Recovery FacilitieS .cecceccececccacscccssnrcscsssccccscsns
.5 Implementation Structures ..ccescccssccccscessssscsccscccssvcncne
.4 One Possible Application Using the Primitives .cccccccsscsctccccces
1 Action Synchronization ..ceceecesvcssccscosssscssccscccssccsnscccncne
5 A Dir'ectory Example 0000 00000000000606000000000000000c00000000cccooce
.6 A Cooperating Process EXaMpPle .ccccoceescecsccccsvosssccssssssoscsanoe

.7 sumry © 00000 0PN GCCQCEOCCEPROEPROIDPOIIPEODINOGOPOCE0EOORCENISIOESICOCESIOIESIPOCSPOITCETDBTES

REFERENCES 000 Q0 00 002 0000000060000 0000802800880 20000838008008088C8SSSICIOCEETBTIESEITOTTOITITS

168
168
169
169
169
170
170
172
173
178

179
181

182
184
185
185
185
188
189
190
190
193
19%
196
197

198

s
.

-

.,

Ly

r
NN

- “I'

v

3 Sl
b DA
(Wl Page 1x e ¥
o VOLUME 2 ; y
)~
'O LIST OF FIGURES
N AR
e Figure 1: Send and Receive Statements in ALSTEN...cececscsssosvccccccsosssdT SN
l_- Figure 2: Port and Port Tag Declarations in ALSTEN....ccsceoesassnscscscssldd L@
o Figure 3: Denoting Ports in ALSTEN..e.cecesccoscssccsscsoscsssscassccsscessll S
ey Figure U: A Simple Server ProCeSS..ccecccccescsssscvsscsscscsssssssscssscssedl S
- Figure 5: Mailbox Process Script Type Definitions...cecccecesesccccsccssoses5l e
N Figure 6: The Mailbox Process Script.c.ccececcecceccscsessssceccscccssasesd2 RN
Figure 7: Network Specification in NETSLA.eesecesscaccoscscsscsoasssceceesd3
Figure 8: A Simple Network SpecificatioN.ceceeececccccscsccccsaccascsanaeessl B 3
»jnj Figure 9: Graphical Representation of the Simple Network..ecccececcccssssssd5 f};:
X Figure 10: NETSLA Event Handling and Initialization ClauSeS...cc.escecseeces56 5;'j'
z:;: Figure 11: Simple Activities in NETSLA...ccccccoccsscsssscscsscscscsasssassd8 T
o Figure 12: Alternation in NETSLA...:ececeescsocscssscacsasscsscsccscacscscsscssbl - 31

~ Figure Iteration and Location in NETSLA.ececcesssccosccsnsccsaccssssossesb2
N Figure 14: Simple Mailbox Type DefinitionS...ecececcecscsscscacssosssscscessbl

N
w
.o

. [:u.

oo £
: Figure 15: Graphical Representation of the Simple Mail SystemM...cceeccccscs63 o fj
L‘“\ Figure 16: Network Specification for the Simple Mail SysteM...cceecesecsessbl RIS
PO Figure 17: Compiler StruCtUr€..cceccescecscscassssscscsssscsssssssscsssnse il N
jg Figure 18: Timing DiagramS...cceeeecesaccscsccscscsccscasacsssscsscscssascslld o
' Fisure 19: Network......-.......o.-.-............-.-....-.................1“9 =
Ak, Figure 20: Conceptual View of the Architecture....ccecescesesscsscccsassesasl50 o)
‘?* Figure 21: Implementation Of POPtS..151 ':iiu
A Figure 22: Resolution Table for Propagation/Independent....cesceecescsscss 164 R,
:Q} Figure 23: Resolution Table for No Propagation/Dependent..cccceecsccsccses166 -Jf&j
;s Figure 24: Resolution Table for No Propagation/Independent....cccseeeesess167 ;fa:C
2 Figure 25: Action Events Related to ObjectS..cceceeecescsesaccssaccnscssasl8T A
‘ Figure 26: Conceptual Data StructUreS.....cesseesesesescsscsscscccccsscsacsl9l o
2o Figure 27: Data Object StrucCtureS..ecvecscsssssccsssscssascssssscscssaccesl92 “*:
:;: Figure 28: Natural Nesting EXaAmPle....ccssescscscsscscsvsssscssnssssasscssld3 N
Sl K
k. X
LIST OF TABLES

OB Table 1: Buffer Size TeSt ReSUltS.ccccececcccssssccsscosccscssccassssnseslli2
\ Table 2: Timing Data for Runs on Unloaded SystemM...ccecsccecosersssscsess 143
S Table 3: Timing Data for Runs on Loaded SysteMeccccccececcscsscsscsseasrsll3

% <
‘0 % % '
2’2"2"s

XA
L P

a’a”®

4% 4
") 4 W 30

2 XXX
40

LN A3

"N

!
\

A .‘

AR A w\. N
) ‘u

i "-':': A‘ *' "'* .\,._L\.

. e
e

Page xi M A

23e

L0

>

- TABLE OF CONTENTS

{
:’i SECTION 1 INmowm‘IoN LK 2 A B AE B B BN BB A R B K IR R IR X BX X DU Y BN BN AN AN BN BN 3R BN BN N BN BB BN BN BE BCRC BB B K BN A

:..“1': .1 General LI B BE AR B B BN K BN RY BN BN BN BB BE BN BN BB NN B N B BN RE R NN BE R BN N BB BN AT N R N RC N N B NN N B BN N R N N
::"2 .2 Purmse or This study 000 00 GOS0 EOPAOG0IOOREO QOO TINOESNIBOSOIBOIEBSBIEOSOEEDS
e .1 Extensive Support Capabilities Are Essentialcecceeeccccceocs

«2 Scope and Outline of This Project ecceccecsssvcccesavscscscsacscns
PN .3 The Life CYcle of Distributed systws 6 6 008 08000 C¢0OSSEOSOEsBEEPONOSDIYS
.Ul Categories of Support Capabilities and Their Application ..ecceeeee

-
CWOWANANTWW = =

>
o

$;4 .1 Software Development Support TOOlS ccececccccecesessscsccscscsns

;fii .1 Examples of Software Development Support ToOlS ceeccscessces

.'\"- 02 Applicability Of Soft\ial‘e Suppo!‘t TOOlB 9 P 06000 00000 S0000P
«2 System Design Support Facilities cceccececcocccesscecsccocacacas
1 Examples of Hardware/Software Support Facilities ..cccocesee

- b
b b

1S9AY
}ﬂ= «2 Applicability of System Design Support Facilities ..ecceceeee 11
:.:‘::: o3 Ope!'ational Support Capabilities €000 0C0 00 P0QCROCRIIOOIOLIIPOTIOISICEOIUNCTOTS 11

=y
N

a0 «1 Examples of Operational Support Capabilities ..cccceeccccaces
Co «2 Applicability of Operating System Capabilities .c.ccsccccase
5 Applicability of System Support Capabllities .cesesccccessccccenses

—
w N

::ﬁ .6 Support Capabilities and System Functionality cceeccecocescasccsces 15
::w" .7 OTHER HORK IN THIS ARBA P9 0800000 gees 00 et B PRI EIBOSEOSIAGEESOSOOAEPOSBNOETSDS 17
':J' .1 BHDATC—P €00 00 00000000060 0CE00000EP08080000E0D0ECE0GCE0CEOOCR0CRCECTOITSETDS 17
e .2 General-Dynamics (RADC) PrOJECE eeecesecescessasccssasscosaases 18

-
O

‘8 Organization of This Report G 8800 00000 00Q00CINCQRGNOOEBIOISIOEIITERNIRSIBROEES

'9 Rererences 0008880000000 00 0000000900008 800 0880800000080 000CsDNQCOITS 20

—*
%

‘l
> P

SECTION? SOFNARE DEVELOPHB‘T mPPORT TOOLS W0 e0eEPOsIEEOOIIBIABOEEROCEOIOINIGOGES 21 :'. :'

:‘: 01 DQSign Lansuages 0000000000000 00006060000080008000000000808C0000000CE0OGTSTS 21 ':;'.‘.‘ﬁ:-

..-F, 01 Int!'Oduction 00 0000080000000 000000000 R0000088 200000000000 8000008TSTS 21 :\i\-

,‘. ‘2 Backgl"ound 0000000000000 00000 0000800000 CE0CU0CENECCE000CC0CCETRCECIIOITGES 22 '?
03 Pmblms 0000000008050 0000000000000000000000000000000800000CEOGCIITCGTS 22 :

'-’\' ou P!‘Oposed S°1ut1°nﬂ 00 000000000000 00000C08000C00000CO0TITROOGISIOEIECROITODN 23

":': 05 Relationshj-p tO Othe!' FDPS wOl‘k 000000066000 0000¢00a0000000COCRRTOCETS 2u

':_\’. '6 Resourees and Sehedule 9000000006080 C000000000c000000800OCO0COCORCRITOTS Zu

:(: 07 References 0000000000000 00 000000000000 0600C60 0000600003 00000c0000csse 25

e .2 Language Support for Robust Distributed Programs .ceceesscccacessss 27
R .1 Why a Language for Distributed Applications? .veeecessscccccecse 27

. .2 Pr‘oblas 1n the m.isn or PRwET I EE N A NN E N R NN NN NN NN NN N NN NNNERN] 27
"\l ’3 The Problu of ‘lgori tmc Fauure P00 00ICOORNBOOOOIEIIEROIEROOIBIOETESES 28
\: 8 P!‘oposed SOlUtion sveeccacscetsedecssnsssnrscsssscsacscssssnsans 30

“"‘"\ 5 Relationahip to Other FDPS WOrK .ccsccceescsccesascccacacsasssess 30
.6 Resources and Schedule 0 0000000c000000 00000000000 CCOCOIIOIOROIIIOIORGES 30
o7 REFErences .vececesccseecrstcsasssssssssassvocsrscssvsnsvsncsssane 31

e . n3 ccmpﬂe!‘ Develop-ent T°°18 PR0000 00000000 OEINIOENIRCOOCEOIOOIOIOEOIOESICEOITUETRTDS 32

::‘: «1 Front-end Generation T &
\‘:! 2 Autmted Code Gemram Gemratorﬂ SevePEIACEROEIVOIIOIEBNIEIOOIOINSREOOD 33

\v'. 3 AHulti-langulge Code Generator ..ececeescevsscescescasscssascacs 33
"',‘ N Unification of Compiler TOOlS ..ocevvsececvocarscosccaccoccanceas 34
T.. .5 R‘latiommp to oth‘r mps “wk 00 000N IONAEPPEIOCEOEOIOORICENNCEOERTROQIOGEISTYS 3“
«6 Resources and Schedule . 1
o7 RefOreNnCes ccoccceccvsrscessssssosasosrccctarancsssoacsanssssssssse 35
4 Compilation Techniques for Distributed Progralmsccceveeceseess 36

.
.

S TN TN S T AT A YRt e L el Mo w v . e e el . T
G I P A T N e T T e UL N N .. «
-'_'.\',5"..-..\‘.\'\-. o -.._ .‘.-. e AR IO .

e et A S T T ARG T °
N e T T
¥ 'l RS AT

Tre A e Tt Bt B/t B B "Bt S B i A R % PR g A e A bt B4 SvaCRAn SArS se bt & ANacAdn e -Seie Rin Thin B4 Ade Ma She Sen e Ao
S LRSS A AR S e Y Y TN T W e e

s

Page xii RO
[

-

.1 Intr‘oduction LR S B BN B B B B BE B R B AL BN B N R B R R RN R B BN B R B BB B R BRI R R R R RN I R R B N R N) 36 -{"'-;":'

02 Relationship tO other FDPS WOPk S 06886006000 c00L BTGNSO ECEOIOROIAERTSITREOES 36 .-:;.--'-.r:

‘3 Resources and Schedule $ 000 000 000CEPT0EI0000C00S00LOOIIOENRSOEIISTS 36 ::'-::‘-:’_'

«5Distributed COMPilers siieecseceesceoesrncsconcscssccsscnscnsssscane 37 i
+1 Background sceeeceecscossascssasscsssacsssscssosssscrascssvcsanse 37
.2 Problems and Proposed SolutioNS .eeseesscccesscsssacsscsasssasss 38
«3 Relationship to Other FDPS WOPK ..eeececcscecsassosscsssccsconsns
«4 Resource and Schedule ...veseseascessoscvsassassscnssenccoscssases 39
.6 Software Version Management eeeesvesccsssoserssncscessosssscssosanne
.1 Basic Version Control SysteM c.cccececcecsccccnscorcssssanscscsss U0

(¥]
\Vo)
e W T
for, R
Rl 1] + [} L .
’ el .,
. A
. L‘..'.-.',\' -.'.A:A;'_'Ag

g
(=}
o,

.2 Version Control System and Development +..eccesseecesceosssseess U1 @
.3 Version Control System and Maintenance «...cececeseesccescesesss U3 RN
-4 Relationship to Other FDPS WOPK ..cececececececasecacacasocecass Ul SR
5 Resources and SChedUle .ciceeeseeaesecncencocnsanssnsssscsssanss U5 EASA
T Cost Estimation for Distributed Systems eceeecscececsrssocccscssscene UT e
SECTION 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES eccecacscccoscese 49
o1 INtroduction ..ceceeeccceasscacesnssscosecssasncccsnscsssscascssscscss 49
.2 Performance Measurementcceocssecscoscccssscascscsccssocssssceas 50
«1 Purposes of Performance Measurement ..cecocescesccececsscssssesss 50
.2 Techniques for Performance Measurement «....ecesesccvcsccscanses 52
e3 REfErences ..ccceseausevsccssocsescosssrsoscvssassaserssesscsnssnne 54
o3 SIMUlAtorS cuieiecaserrstecssnctrstcesscrssscoscasssssastsscrsosscssnee D5H
+1 DeSCription ceececesacrsesscososssasassnascssssccanctascsssccsssese 55
02 Background 96 6000409040000 0008008 C g e 0NTEC00at0NSEINRIINRIIBSEOIETBTEBOEOROTOIE 56
«3 Problems to be SOlVed ,ceecserceesescssevsoccsssasssscassscsscsse 58
o4 Proposed SolutionS sievececcscecesecsscasescsvsacssassscacacacses 60
+5 Relationship to Other FDPS Work and SSC'S .eeeccsccccccsssccccsa B0
«6 Resources and Schedule ..scecccessecscsssccccssasscascscccnncass O
l7 Rererences O #0090 870 00000048908 393800008000 0006080000000800s°0OSSIOcIEIRIOIPIGESE 62
ou Load Emulators $ 0 000 00 EE00 00008 00C00000060000000000000000c000d0dsstse 63
+1 Remote Load Emulators - Short Description .ceeeeccece-seseacesse 63
+2 Remote Load Emulators - Background ..cececscacscsasssessssscssses 03
«3 Remote Load Emulators - Problems to be Solved ceveesvcvsoescccecs 65
.4 Remote Load Emulators =-- Proposed SOlutionS ..cececececscsesases 66
«5 Relationship to Other FDPS Work and SSC'S scecoccccocccescssncee 069
«6 Resources and SChedUle ...vsecsesssesccarsasssscssssossssresscas o 69
.7 References 00 0000000000000 0Ca00000000C0000000000 0000000000804 0 69
«5 Monitors 00 000000000 00E0E00000000000000060000000800080000CCOCGCIRCERGREETSTE 70
+1 Execution Monitors $ 000 000 0 00RLE00000 0000000006080 000000C00CCE0GCOITYTE® 70
2 BaCkg‘ound D T A g 4 ¢ A
+«3 Problems to be solved eevsscsecrcescssecrtsssvsnsscarsoncrssasenss T1 ,':‘:':‘_.‘
ot Proposed S0lutiONS s.eeeeeeccccaccasrsssosccsssoscsncasavcsacans T2 e
-5 Relationship to Other FDPS WOrk .eeecevccessenccaccesssecssnsens T3 NN
06 Resoux‘ces and Schedule €9 00003 0TI NSINEROOEEENCRERIIBRAEOETOIRPOEOIOETIRTE 7“ \'._N:
.7 Referenees ..I..C.l.‘.ll"..'.OOQCOCICOQOOOCI'.C...‘..l.'.l..... 75 ‘L'.«;_
.6 Testbeds for Distributed SyStemscceeecceveeecascsscsccssasnce T6 DME e
o1 Descr‘iption 00 0000000000000 000000scncstseccsoecnscncsssstonsonscsa 76 :::':':.
02 Backyound S A0 QE I T CEPC 000000000000 0000000006000 0000680000 00C6RGROGTDS 76 '.:::.‘
+1 Rationale for Testbed Development ceeceeesesssasssssssssceess T6 S
2 ObJectiveB in Testbed Develoment ©900000000 0000000ttt anes 76 \::'-::
l3 Approach '...'..0...0.'0.0‘.‘....l.l..'.l..ll.'......-....l..... 76 - ~‘
.“ Re”wces .ﬂ.lll.l.'..'.....l.l.ll...l......'l‘.'..'..l"..'h‘.. 77 Nt.

.7 D‘ﬂigmr Horkbenchee .Q....‘.......C....l........'...l.......‘..... 78 .::::“-::

o1
.2

.3

5

6

Page

.1 Distributed Database Designers' Workbench ..cecccescsvsccccscasns
.1 Description ® 00 000 80 00 E0 TGP P OO0 B 009 SQCE0 T PSR BOI PSP OOPPNOISPETNDS
.2 Backgr‘ound 9 60 0 0 0000 0 C 00080300 QC0COLROBE0NSOOECSOOSSOCEERIIOIECECOEOETDTITESETPODS

l3 Resources ® S0 00060900 C0000CCCA00ESETTOQSRCEICEEOICERNOSOINNOIOPOEEOETOTOPTEETOSTDS

SECTION 4 OPERATIONAL SUPPORT CAPABILITIES ¢eccecscceccscocosccaccscscane

Introduction eceececcescoscessscceccssccsesccsovsssscsvseccssssscccnnce
Distributed File and Data Management SysStemS .csccsescscscscascocse
.1 Description P 0O S G 0PSO 0 C 0 OO0 B OT T OO ODS OO PO 0P RB T IO OGSO OSIEENTSTISIODONTDS
«2 BacCKground .ecseccscscscsscccsasastvstscscssssasescnasssssvsvosne
«3 Proposed ReSEArch ssecescesscscscssossssascssscsssascscstscssccssna
«1 Replication .eciccecccccccsesececccsscasscsasassossssacssassnse
l2 Uniform Naming ® 60 0 0 00000000 000800 ORI SO0 CEIONSSEOSOIBDPOIEBTOEDOLEISPOTQNDE
3 Version SuppPOrt cceceeccceccsecssacsossscsscsssacsncssncenscanns
4 Transaction Base€d .ceeecscececsscccesossssctssassassccsncsnas
.5 'Standard' Concurrency Control ..ceceeessvsssscsoscesccsscsss
.6 General Object SUPPOrt seeescccevacccsosacsascscssccansscsns
.7 Specification Based CONCUrrency ccscecccecscsesssasscccoacancsne
.4 Relationship to Other FDPS WOPrK .ecceccccccccccacsssccscccccncss
5 Resources and Schedule ceceecercccosssccssescvssossssascssnassssns
06 Refepences 2 0 SO0 QR EPO 0P ECECOO OO N OO P B0 IQICEOOSCEOIOIOEOIERIROIIOIOLBLOIEOSEOSEOETSTTSDS
Interprocess Communication ..ccceeeecscscsccsscsscsccscsscnccsscanss
o1 Background sccecescececcccssssssssesvecaccsssessssescossccsssssnsas
«2 Problems to be Addressed ..ccecevecssccocsssssssssssosssscscscecsse
«3 Proposed Solutions or Initial ApPpPro&ches c.cesceesesccscscccsscne
.4 Relationship to Other FDPS Work and SSC'S .ceesecscccsscccsccsse
«5 Resources and SchedUle ..eccccveccccccsaccssscsscssssssssccassone
6 REFEreNCeS secececccesnscesvssssccsescsasssasssstssescsestonassocsne
Command LanNgUageS ceecccesscococscccscossassscssssssscssnssscccssssne
o1 DESCription cececesscecesccscccssocnssccacsasssssscsccassassssas
.2 Background ® 000 0600080000 CCRISEPODC0 PSR CEB PSSO SIIRNOSIOSEOEOSEOSEBTOREOBTTEDRSRODOTIODS
.1 Options for Common Command Languages cccecccsccccsssccscsaas
.2 Load-Based Command Languages ..ecececcessscscscscoscsarssassssne
«3 Problems to be AdAressed ..cceccecssccscsaccssscccssccncassssses
.u Proposed SOIutionS [EE N RN EEEEREERERE NN NN NN NI N I NI S N E SN I NN NN NN NN NI
«5 Initial ApPpProachesS ..ceecccesssasnsssesscccccsssssssascscccscsssas
¢6 Resources and Schedule ..eccsscecosccrccsscsstscscnescosnssssascss
l7 Referenees G 6 0 080D EER PP OB O EEO P00 G BEROQROEOSOOIOABDOSESIOIOEESTIOEPORNRSTOSOIDOEOSODS
Load Hanagement [E Y N NN EREENENFEEEEERENFERNENRNE N R NN NN I BN I NS NI NN NWNNRNENNNW)]
1 Local Scheduling ccereesessscsnssssssaasssssccscsccsssscssncsssssns
'1 Baekground 'FEEEREEREEEEEREEEE R N N NI I B A B A BN B BN B BB BN BB B BN B BN BB N N B Y B BN N)
.2 Problems and InitiZal Approach€s secccececcececocscesscccccses
«2 Work Distribution .cecececesccscecssvseossocorsssssrssssssssssssscsse
.1 Description G P 00 0GPV QOO0 000000 NBOCQRISBOOASTSOOSNOIOCEROERSTOSTOSOCSTESOOSO
02 Backsround LI I B BN S B BK B BE B RN B BN BN BX BN RN BU B BX B BN BN JN BN BB BN BN BN BN BE B BN BE BE BN BN BN BN N BN B B OB BN NN N]
03 Problems 00800000000 00000C00E0E00C000CNIOPAECEAOeEsesascantscssssse
.3 Initial Approachea CR AN RN NN IR I S B N B N R A R B I A AR B BN BN BN B B B Y BN BY % B BB B B X Y Y N J
.4 Relationship to Other FDPS WOPK cccecccccccecsectacccssccccssnasne
«5 Resources and Schedule ,.ccceccesss00000cccoscsossccesssssscccnces
06 RefEreNCes cecscccccossssssssssassscscsscssssossssntsssosnssssssssssas
Meta Systems 0 00 0 0000000000000 0000000 00C0C0C0CQ0O0OCO0CCESO0CC0C0B0CBCCKCFOCROCRECRCOCO0TDRETRTE

.1 Baekgro“nd 00080 000000000000 060808 0080080000000 08000000ORCECEAQEOIOIRPROSISETOEOOCDO
.2 Guest Systems €0 00000 0E00000000000000000000000000000000000C0C0C0RCGTS
.3 ResearCh Prohlema 00 00 P QS0 0GOS OSSN ROD SO RNJIOEOESOISTEOEOSEBNIOEONOCSTITOSEEOSEODS

AT LA A . T I
d‘.;),.d‘.‘-‘..ftf}-,'. Nr ::-. AR AEE
’a .-\"." ‘\. ~-" LI | -.. » '..n‘

-

.

e 9N W, NN
< -

xiii

...............................

Page xiv

o4 Proposed Research P BB
«5 Relationship to Other FDPS WOPK seeecececcsscscvrcccscncccnccosee 111

«1 Distributed Software ToOlS = DSWT scorveesescevoscssccossscses 112

«2 Distributed Compiling ShellS ..cceeeecccasscccccsscscasceaccce 112

c6 Resources and Schedule 0 00 e 008 0000000000000 000000C00CCCOCEOCROICETItOCEOIOEES 112

07 References € 000 000000000000 C00000000000000008000000000000000000080 113
T The Network Architecture --- Standard Protocols and Interfaces 114
.1 Desoription 00 0000000000080 Q8T0 R IC0Q000CE0RCEQERCECECER0B0CROCREGCBOCRSEBOSOEOITITOOQREBIIO 11“
.2 Ba£ 00000086080 020080 0000000800 0000T0C0CENITCEQCENOIPNINUPRIRRCECEOENIRTSTOQEOIEOCEAOEOOTEOIOETDIITDS 11”
.3 Problws 00 0800000000080 00C60 0000060808000 0800600060000080000000880s000 11u
.u Promsed solution 0000000084000 0000000000000 00000CRVCE0CCPEOIRCEOCOCPTO®TDS 115
.5 Relationship to Other FDPS Work and SSC'S cc.cecccvccscscccccsece 115

-6 Resources and ScChedUleccccssscesscsascsosessssssacasssascces 115

.8 Operational Support Conclusion ..ccceeeccccsssscesssscssascansscass 116
o1 Ensting Research At Georaa TECh seessecccocensscscsscsnsssseccs 116

«2 'Guest!' systm Resources €0 00000000008 00800000060080000000006008000 117

03 'Native! System Resouroes 0000000 0000000006000 0000¢00 080000000000 117

SECTIONS wmmY 800000008 ¢a00060 0000000000000 0808000e008000Ccc0c00000000 119

«1 User Role in Development of Support Capabllities ...ececcececcccass 119
.2 Integration or support capabilitiea [E NN E R NNNNNNNFNNNNENNNNNNNNNNNNNN) 121
+3 Importance of Productivity as & GOBL .ecceccvcsscosscsccssossnsesce 122
o4 Transportability of Support Capabilities .c.cecececscesssccccccsces 123
.5 Evaluation or supmrt capabilities P00 00000090000 CEPQECEINRROEOCROIOOSOSICEIOITDBSEeEDS 12"
.6 Development of Operational Support Capabilitiescccecvscsscecse 125
«T Role of Network Architecture .ccececceccceccccsocccsacccvroccnsassvacses 126
.8 Development Priority for Selected Support Capabilities ...cccoeeeee 127

«1 Criteria Utilized in This Report 0000000000000 0000000CCRCORCERIRETITITS 127

.2 Pﬁority List €9 0080000002000 080C00800600C000 000080 CR0E0CEOCBOCOVPTIOCEcEsOIOIABEOES 1”

u9 References ® 0000000 0000000000000 00000000000000000C600800000000O0CQO0GCTROGTE 129

(A
4 »,

(]

v
L] :“.

7
,l
‘

.
“s %y

R4
07,
A

o A SLALACAUMAREALI A SA IS e su i e it i s s & 4 o e ba ST S

Page xv . e
VOLUME 1 .

LIST OF FIGURES
Figure 1: Purposes of Performance MeasuremeNt....cccececceevcsccacccsccesedl

Figure 2: Techniques for Performance Measurement....scecccccccooccsccocnesd2
Figure 3: Structure of the RLE Implementation....cccecesecccsccccccccsasesb8

LIST OF TABLES

Table 1: Utilization of System Support CapabilitieS.cccccecceocevesccceacesll

.. (R) “. " . ", R N
0 ot N
-~ - I.‘ \-. . - - - .
e e e e At e et e e e e et
R '.l.'.A?:h.'J RIS IS -.'.A" S VSN AR 2

'3 Appendix A Extending File Systems

_:j-:fj

.fj APPENDIX A

{ - EXTENDING FILE SYSTEMS TO DISTRIBUTED SYSTEMS ‘

‘153 T30

o N. J. Livesey ;;i;
" A.1 INTRODUCTION ..o

;;ﬁ This paper examines the so-called 'meta-system' approach to Distributed i?Ej;

2&3 System construction; that is, constructing a distributed system by wutilizing ;;;fz

}ﬁ; existing .local operating systems. In particular it looks at some of the file Eii;

' 8ystem problems that may be encountered when such an approach is followed.

;3; These problems are simplified if one has the opportunity to rewrite the under-

E;ﬁ lying local operating system (see [Oppen 81), for example], but typically,

f&} this is not the case. Since it is impractical to look at all existing 1local

=5 operating systems, I focus on a particular local operating system, Primos,

-%Eé with its overlying user interface, the Georgia Tech Software Tools Subsystenm.

fk However, these comments do not apply to just this environment; much of what is

¢t4 said is probably true for many existing local operating systems.

= A.2 GENERAL PROBLEMS

Aﬁf The problem with most existing local operating systems is precisely that

[Qﬁ they do preexist the design to distribute. Although a local operating system

should have some autonomy, it should also have been designed with an eye to
integration, if it is to be useful in a distributed system. There seem to be

two classes of problems in extending existing operating systems to new

e

]
X

purposes:

"Deficiencies® in the existing local operating system can make it very
difficult and involved to perform new functions in a reasonable way. There

. 1555

A

"

;i are very few things that any operating system will make it impossible to do,
:55 but if the system was originally built without them in mind, it can lead to
g\ﬁ contortions, and contortions lead to inefficiencies.

'E? "Biases® in the design of an existing system can often lead one to

:’j extend it in certain ways, without fully exploring alternatives which might be
’dk equally valid, and the ease or difficulty of adding features to an existing
S?E structure can close off debates on the best new features to add.

-‘.;3
s
s s

et
.......

..... "a e N e te " '-. "»
O R OIS N Y
YABLEERCLIRERE VLGt

' Page 2 Extending File Systems Appendix A
;}: The solutions suggested in this paper are intended to avoid these
:::-ﬁ- problems at minimum cost, rather than to produce radical, but expensive,
'- - solutions.
- A.2.1 Naming and Addressing
'E::i "Meta" distributed operating systems are produced by introducing a
*'.f:‘:: network operating system on top of previously separate local operating
systems. This network operating system must at least make it possible to
:;‘,:: allow a job on one machine to access files on another, and 1t should
::'.: preferably allow a user on one machine to run a job on another without having
SN to log on to the second machine.

’

.-

File naming is a problem area in meta-distributed systems because the
naming ‘space' of these systems is usually the union of the naming spaces of

[#

their component local operating systems. In order to address resources in the

-

: total system, one needs to introduce mechanisms to allow the user to address

‘ outside the local system on which he may be running.

,ﬁ Ideally, one would 1like a single name space for the entire system,

"s rather than connected individual name spaces. Why is this not easy in a meta-

. system?

e A.2.1.1 File System Naming e

:’:}“ We need first to allow across-machine file access, This is easily :Z::EZ::

\" achieved by running a server process in the system which accepts requests from :’,
Jobs running on one node to access files on another node. This may be a :'

-":J central process or a distributed one. :::::.'

NEY s

i:.'j Usually this server is capable of dealing with both local names, which _:_:

'}:: are interpreted in the name space of the current machine or of a local direc- . :;

.. tory, and global names, which are interpreted in a space consisting of all the

o o machines which are currently operating. A From the user's point of view, there

'f::;: are also relative and absolute names. For example:

;f: e The unadorned pathname:

macros

,' might be relative to my current directory (set by the 'ed',

L change directory command), and returns a file called ‘'macros?,

")‘ if it exists, in the directory to which I am attached,

3

P
'.'!'n .
St

LR
Sy

v,

e
e
)

Il“‘ .‘.
FLA R R Ah

KB

L) l.l'
R R
LA WA

Lt

o Pate]
. ,
.
‘

)

Dt}
.

» s
o+

. 5
LR J

%‘-

L]

....................................

Appendix A Extending File Systenms

e The absolute pathname:
/uc/jon/macros

returns 'macros' which is on node C, if node C is accessible,
irrespective of which machine I am currently working on. The
pathname element /uc simply indicates machine C in the network.

o The relative pathname:
// jon/macros

is a pathname relative to the current system, and returns the
"nearest" file called '"macros'. "Near" is determined by the way
in which the 1logical disks are ordered by the systems
administrator. Local disks are always "nearer" than remote P
disks. LT

- -
File systems are only special cases of name-to-address mapping r A

mechanisms. At each directory level in a file system, you can tell a direc-
tory the name (of a file or directory) in its name space, and it will respond
with an address, leading you to the file, or to a directory whose address
space contains the rest of the pathname. So,

'
Sa's!

/ub/jon/macros

.
)
.
)

is interpreted (mapped) first by a top-level directory which strips off */ub!
and maps you to a directory 'Jon' on a particular node, node B, where a direc-
tory strips off %jon' and maps you to a file 'macros' in its address space.

+

e
’

LY SR
PG
h
|

Graphically, this can be represented as a tree, where each path through the

tree leads to one leaf:

root
/ \
/ \
/ \
ub uf

/ \ \

/ \ \
fred Jon Jon
/ N\ / \ / \

/ \ / \ / \

other macros other macros other macros
Here, /ub and /uf point to the roots of the file systems on machines B and F,

A relative pathname starts at any given internal node of the tree
(determined by the last 'od', change directory, command) and an absolute path-
name starts at 'root!. Since there is only one path from a given internal
node to a given leaf, there is no ambiguity, once we know at which internal
node to start.

v
.......

.................

Page 4 Extending File Systems Appendix A

:Ef‘ A.2.1.2 Aliasing

- In addition, I may also have a template or alias file which will perform
5 transliteration or aliasing of file names allowing one file name to masquerade
.-; as another, but which will not perform any interpretation (i.e. mapping).

SE: The interpretation is performed after the aliasing.

‘:':.: One can imagine a routine expand() which performs filename aliasing

before passing the expanded pathname on to an gpen() routine which performs

.:-:;‘ directory searching to find the actual file intended. The alias filename must

S'\ appear surrounded by '=' signs and if the alias file contained the line:

i

N’: | macros /ub/ jon/progs !

‘_\- then =macros= would be transliterate into /ub/jon/progs by expand() before

AN

\ j_.;:: interpretation.

§} I might decide that =macros= should translate

= into any one of:

il

.

5 progs '::
’ and the file I finally get would depend on the interpretation which is per- "
'. formed by open(), after =macross is transliterated, by expand(). In other
i‘:t words, it would depend on the current directory if we transliterate into a
::j relative pathname, and not otherwise, "3
f-': Templates introduce a new mapping which is not a tree and which does not 1
_ map from the internal nodes of the file syatem, set by 'ed!, but from the .-:"_
::::: alias or template file of ‘ocurrent user', set by 'login'. A template file is E‘
:1-: attached to an account not to a directory, and does not change as a user works “
;‘_: on a given node of the system. It is set as he logs on.
.,: However, a user may have accounts on more than one machine, Since tem-

j.s_, plate files are per-account, and not per-user, they are a local-system concept

._:}_; which has to be extended in some way in extending the system.

.- Suppose 'jon' has two template files, one on logical disc ub, and one on

:: logical disc uf.

,a /ub/ jon/template:

‘3 | macros //jon/macros]

o2 ! other /ub/jon/other :|

~° !

-. A - 4N v .V ". AL R A S AP SR Sl Tl Bl Bl Bl M A 4
\.:
Cor Appendix A Extending File Systems
O
<.
::_ /uf/jon/template:
IS
IR | macros //jon/macros !
. | other /ub/Jjon/other ! r @
) "\ l ' .:_..:__.:
- ’.h".."'-
.';C: Then when 'jon' is logged on to machine B, the following mapping will be fl-_»;.:::.
o\ o R
‘E.; superimposed onto the file system by templates: .:';.:_'j::_f
- root = —
o / \
-\'"q / \
T / \
< ub uf
2 / \ \
Y Y
/ \ \
i fred Jon Jon
‘$ / \ / N\ / \
¥ / \ / \ / \
-2 other macros other macros other macros
-'ai' ' ‘
ke | | —————
ad | 'eww—e macros |
\ | ——
= ' other |
P | |
S e
N while if *Jjon' is logged onto machine F, the mapping changes to:
- - root =
s / \
"
e / \
=~ / \
o ub uf
i / \ \
/ \ \ T
N5 fred jon jon Sy
N /N /N /N Pl
-:; / \ / \ Y \ oS
1':. other macros other macros other macros A
— l ! E Dy Bad
5 | ' .
5 | | macros —eeee=’ KDASA
3 e
:." I I--—----- I .\..\.-
SN
s};' Yecewne other | .:'_} >
N ! N
RO The mixing of transliteration (templates) and interpretation (direc- gl)|
:'.::i tories) leads to some unexpected 'features'. For example, if the text format- :ji-'-'}:'j
v AR
:;::* ter prograa ‘fat' which reads text source files and formats them for printing, A
o, AT
:: also allows me to read in a file oontaining formatter macro definitions by ‘.:j-ﬁ:}.:j
: P
‘ including a line: 'I
o .80 filename :a
I.::q ::.::.“a‘
:"': -'_:'- T~ x
& e
o e
A -
}.’.\f\i".f _.-‘ \-‘ - . ‘- . RN - * et .- : 3 :::-:
NN TN T .-\.-\.-.'i:‘:-? A . e :_:.:-.: AN
X N e e e T e N e T T T T T O T e)

SRR CAA TS & AR G arh 4 T AN a0 - AT AP AL el U I S ._?*J',‘Z'_.
- "-
e
<.
~ -
ix‘ '
»

Page 6 Extending File Systems Appendix A

in my formatter source file, then I can make up a text formatter source file
'file.fmt' which calls another file 'macros' using the text formatter's ',so'
feature:

file.fmt

! .80 =macros= H
| rest of file]

Now if I format the file, using the command line:

fmt file.fmt
the formatter will first read file.fmt and on the first line find the
reference to file =macros=, In attempting to open =macros= it will first get
it transliterated according to my templates file, then read the =macros= file
(whichever one is finally opened by expand() followed by open()) and use its
contents to format the rest of the document. Supposing that I am on machine
B, and that my templates file on that machine contains the line:

macros //jon/macros
then it will be transliterated to //jon/macros, interpreted according to the
machine I am currently on, and finally read in as file /ub/jon/macros.

If I were logged in on machine F, with an identical templates file, and
read in the same formatter source file *file.fmt', then although expand() per-
formed the same transliteration, the macros file finally read would be
/uf/jon/macros! This might or might not be an identical file.

In other words, there are two levels of potential confusion:

1. You can have dissimilar template files in your accounts on
different machines, and then the same template may Dbe
transliterated differently.

2. Even 1if the template is transliterated identically on the
machines, the fact that you may be in different directories on
the different machines may lead to the interpretation of the
transliterated template being different.

Clearly, to this, and to many of the subsequent difficulties I shall raise,

there are purely administrative solutions. ;ﬁ;fgf
I can avoid the first difficulty by having identical templates on all %iﬂﬁi?
machines, and undertake to keep them all identically updated. Eéég;?
I can avoid the second difficulty by making all templates transliterate :‘3.':::::'_§

into absolute pathnames: ESANRN
macros /ub/jon/macros :5;:!2

However, the fact that I have to solve these very obvious problems by :t;:;ﬁ

- .:t:-:\‘

SN

e 4 r"f P,
’
) "

Al DN SN
s L

o~ A A S
N N N AN A
%) AT Rt

Appendix A Extending File Systems Page 7

user aoction suggests that there is some underlying problem which is not being
solved at the operating system level.

Even if I adopt these administrative solutions, there remains a problem.
For example, if I grant READ permission on 'file.fmt! to another user 'fred?,
when fred reads ffile.fmt?, the formatter will try to transliterate =macros=
according to fred's template file, which may contain no line for =macros=, or
worse, a line:

macros //fred/some_other_file

in which case fred will format my formatter source file with an unintended
macros file which may be grossly inappropriate, leading to a formatter crash;
or it may be very subtly incorrect, leading to a successful run of the format-
ter and the production of an incorrect but plausible document.

Fred ought to have access to my template file when formatting my
documents., In fact, Fred ought to be me, or rather, be me in this project.
In order for the operation of formatting the document to be carried out
correctly, interpretation and transliteration ought to be carried out per-
project rather than per-user.

The main problem is the mixing of two operations, transliteration and
interpretation, which look similar but are quite different. Transliteration
is always carried out in the context of the account (not the uyser, since he
may have accounts on several machines), while interpretation is carried out in
the context of the file system subtree identified by the pathname.

In summary, if you tie together several existing file systems by connec-
ting their roots, then a single user'!s files will no longer be in one file
system subtree, but in several, one on each machine. This leads to
inconsistent file pathname mapping.

Operations are performed per-account (such as template handling) which
ought rather to be performed per-user.

If this 1is resolved by administrative measures, such as the use of
absolute pathnames, the user will be forced to be aware of his physical loca-
tion in the system, rather than of his logical location.

A.2.2 Flle Storage Struatures
Given that file system structures should reflect some logical
relationship between the files that they contain, some other questions arise.

el
o,

LY

SRRSO X 2N, B

AR AR RIS LY AN
S _-.:&«.:_\:_\:_\::.,__\-‘-;.,.{\::\x- e

“C'\q‘,

» A T Wi
DY ARG
:\1:_\':\

B

A
-"{ ‘,
a .

[
(]

v .' *
N
.l“l“l.

(-

1 Ld
G
SN

e

'a‘ .

A

WA N N
A

_
'. *
&

PR
~

OR)
"-" L ".

LY

ay 4%
-
L

LA ALY SN ARINR
.'.‘S‘ :.;' A \ .-‘.-:.-.;.

i)

._%._‘-

POEP ¢ ,
AR ’l.‘-.".*-."?.". t)

S
P

Page 8 Extending File Systems Appendix A

There does not seem any good reason why a user should not be able to
generate and use a file system subdivision (not a subtree) which crosses disc
boundaries, and even overlaps with other subdivisions. Directories should be
able to contain entries pointing to directories or files on other disks.

A.2.3 Diatribution

Now we can take a look at the consequences for a distributed system.
One finds that in a distributed system the concepts of transliteration and
interpretation change 4in subtle ways. Even in a centralized system, we have
template mappings which change according to login account, as well as file
system mapping which do not change if absolute pathnames are used, or which do
change, if they are relative pathnames. The only reason that relative path-
names change their meaning is that 'login' implies 'ed’.

In a distributed system the problem is complicated because jobs can run
on one machine, with the file system mappings appropriate to that machine, but
with the template mappings which have been imported from the machine on which
the user is logged in. In effect, we have a 'login' which does not 4mply a
'ed' (unless we yant to do a remote 'login®, in which case it is not clear
what happens).

One thing that a distributed system should try to do is to allow a user

on, say, B, to run commands on remote machines, using a syntax such as:
fmtéF file.fmt

In order to achieve this, the command line is sent to the command interpreter
on machine F. Along with the command line is sent the ‘'ourrent oontext’
(including the template file) of the user. In fact, what is sent is the
current context of the account of that user on B, and is potentially quite
different to his context on machine F. (He might, for example, have no
account on F or might not be logged on there at present).

Now we have the potential for a job run on F from B to produce different
effects from that same job run on either B or F directly.

Suppose we have the same source file *file,fmt' on /ub.
file.fmt

! .80 =macros= !
! rest of file |

This file will pot be the file accessed by the command line:
fmt6F file.fmt

. "u"'n:. ‘.’l'.z

o

si
‘ 1]
L)
8
2y
\ 8

a"\

WA

v
) L.

Appendix A Extending File Systems Page 9

instead, the command line would have to be changed to:

fmtéF /ub/jon/file.fmt
Now we can send the command line to F, along with the current context, and see
what happens. The remote job executes on F ag if executing on behalf of
/ub/jon, as far as transliteration is concerned, since we sent the template
file of /ub/jon along with it. When the formatter on F reads /ub/jon/file.fmt
he sees:

file.fmt

| .80 =macros= |
| rest of file !

transliterates =macros= into //jon/macros, for example, and now interprets
//jon/macros in the context of the machine he is running on, attempting (or
succeeding) to read a file /uf/jon/macros. In effect the job has run partly
(transliteration) as if belonging to /ub/jon, and partly as if belonging to
/uf/jon, This raises some interesting questions about location information,
and how much of it the user has to be aware of.

And it is not always an answer to suggest that interpretation should
also be carried out in the account context sent with the command line to the
remote machine, since some users will want their remote command lines to
access within the context of the machine that they are on. In particular,
someone who wants to use the remote command line execution feature as 'remote
login' wants precisely that, to transliterate according to the machine he is
on, and access files according to the remote machine he is remotely logged
into. Or does he? Some of these problems can be avoided by simply using
absolute pathnames at all times, but then you solve the immediate problem at
the cost of giving up the entire template and file pathname interpretation
systen,

As usual, you can kludge these problems away by totally rigidifying the
system. For example, adopting the rules

¢ all templates map into absolute pathnames.

¢ all remote command lines contain absolute pathnames.

¢ all remotely executed source files call absolute pathnames,

But maybe this is not what is wanted in a distributed system. Maybe I
want to get P"The nearest file called 'maoros', or a further away one if the
nearest node is down®™. This would amount to allowing the transliteration of a

«Cs e

B .
A

AL

.
2
)o

s
1
£ 4

Fd
"

B B A S - P AT S I 2 N L SN R L N

oy S
Zi Page 10 Extending File Systems Appendix A ;:*{
:\. given template to vary from time to time during the execution of a job. This E%?Efﬁ
-ﬂi would require the file system to behave much more like a database, recording, ‘j!-ii
-~ for example, if two files called 'macros' are identical copiles, or separate -‘-*—5—*

objects. And I would 1like to have at least some facilities equivalent to i "
‘E; relative pathnames and templates. 1

:}‘f
S A.3 SOLUTIONS
a0 In this section we attempt to present solutions to some of these
;:& problems in a fairly general way. In some cases these solutions call for sim-

;:j ple modifications to the local operating system file system.
> A.3.1 A Domain Struotured File Svatem !%
~;: In order to avoid some of the difficulties listed in file system addres-

f: sing I am suggesting that we use a file system which is basically domain (or o
g capability) based. ;

The underlying structure of the file system will be unchanged, and will ?ggﬂii

:; be tree-structured, but users will be able to set up 'domains' at any point in :E;E:ﬁ
Ei the file system to which they have access, which will allow them to address ff;ﬂtg
o any files they want in a 'one step'! fashion. The files to which a user has
s access will be determined by owned capabilities rather than by access list.

}: We will change the routines expand() and open() to implement the new file

;3 system structure on top of the old.

2 A.3.2 Desoription and Implementation
N It seems that all the tools that you need in order to construct a
;:5 domain-based file system already exist in most local operating systems, since

Ef my proposal basically uses only an extension of the 'template! mechanism.

- A domain structured file system allows a user to set up a context for
N himself in the file system at any point. In order to do this he uses Jlocal
a# template files. At present, template files are per user (actually per
23 account, since there is an individual template file on each machine for each

account) and the merit of templates is that they allow very simple 'one-step’
file name transliteration.

- Typically, one now keeps all the files for a particular program in a

<
’l
G
2\
"-
%
¥
4
%:

single directory or subtree, except for central files used by several
projects, and once you have done a 'od' to that project directory, you can
then refer to those files using very short relative pathnames, typically only

Ej-.s pid “Y¥a v - - - - - . - - .. R - . .

"".

Appendix A Extending File Systems Page 11
,- one element long; the name of the file. This only works for files in that s
{:}\.j directory; hence templates, which allow one-step file naming for files in '.:_':I:j:'
(. other directories, 0y
‘:E:j-" One can achieve the same effect in a more consistent way by abandoning <
.:..'t' direct use of pathnames altogether, and relying totally on indirect use of

pathnames through templates., In effect we redefine a directory to be the tem-

}

~ plate file at some position in the file system,

Consider a user ?'jon' who has several projects under development
:::::E; concurrently. Each project has a program source file; progil.r, prog2.r, etc,

: and a documentation file doci.fmt, doc2.fmt, etc. In addition each program
A
_:-J.: calls an 'inclvde’ file; def.i, which contains some common program definitions
;-}l{: used by both programs, When run, each program will read data files data?,
a2 data2, ete.

N
e —e root ==

- / !

¥ / |
N \: / !

2 ub uf
RN | |
. jon |
o !

AN / | A |
A docs proj1 ineclude proj2 |
NN ! |] | |

i {docti.fmt |progil.r !def.i |[prog2.r |
o |doc2. fmt | | Iprog2.b |
ldoc3. fmt. | | | |
e {docli.fmt | | | !

o |
-]
!

..:..) Jon

gt /A

b ‘::_.4 / \

:._;-:; proj3 data

NQ~] !

lprog3.r |datat
ey | {data2
‘;; ! jdata3
o | |test1
oo [test2
o |test3
Ao Now we can build a domain (local template file) for project! which is
' ,':, suitable for program development and testing.

Lot
NS
T

Extending File Systems Appendix A

testingl:

e prog.r =~ /ub/jon/proji/progil.r
o data ~ /uf/jon/data/test1
(. obj -~ /ub/jon/proji/progi.r

A prog ~ /ub/jon/proj1/prog1
- def.i - /ub/jon/include/def.1i
<2 We can build a similar domain for project 3:
<l testing3:

!’ prog.r =~ /uf/jon/proj3/prog3.r
ey data - /Juf/jon/data/test3
'-5? obj ~ /uf/jon/proj3/prog3.r
R prog - /uf/Jjon/proj3/prog3

i def.1 ~ /uf/jon/include/def.1

It may be worth noting a few points here:

¢ All pathnames in the domain file are absolute; they all have
exactly the same effect no matter where on the network they are

> :‘ evaluated.

N e In use, the domain files allow you to address each file 'in
o scope' by a short, one element name. For example, when projecti
,;n' is in effect (for SWT, when testingl is the current template

j file) editing ‘'prog.r' edits the file /ub/jon/proji/progl.r.
; Naturally, you can choose any names for files that suit you. A
x one-step operation of changing the domain in effect to testing3
’ changes 'prog.r! to /uf/jon/proj3/prog3.r.

A ¢ Some files appear in more than one domain file. These are
shared files; for example ‘def.i'.

-~

; ¢ The domains are similar for similar projects. This suggests
v that standard domains might be parameterised.

\
N ® We can produce other domains which use the same files in
' different ways, for example, a domain suitable for documenting

o' project1:

tgﬁ document1:

c!.-l

n'3 prog - /ub/Jon/proji1/progit.r

o doc - /ub/jon/doc/doc1.fmt

S def's - /ub/jon/include/def.1i

N defdoc =~ /ub/jon/doc/def.fmt

. .: o
,:iﬁ- o A file can have different names in different domain files. When
e documenting, we are no longer concerned with binary and object
1‘} files, 80 there is no longer a need t6 make them visible in the
ﬁﬁfﬁ domain. We could have another domain for testing:

7o
& :. runi:

o

' 2 prog - /ub/Jon/proji1/progi

N data - /uf/jon/data/data1

e More than one file can appear with the same name in different
domain files; 'data' was a test file in testingl, but a regular

.‘Sn \'\‘)\ \ '.." - \~ . .,]l O ' . ..-.._-_. ._..- «"a
"Q" ’\! \. " ‘e ' Ll .." o
(AN o ¥ B Wi WO N v,

Appendix A Extending File Systems Page 13

data file in runit.

e e Once again, at run time we are not concerned with file prog.r.
O Once a program has been compiled we no longer care about its
l source and object files,

A.3.3 laing Domains
Templates are taken from whichever domain file is in effect at a given

- o
PRl -

-__54.4.

. LI . . . ", »
B ¥ M .
N " o» M .' S T T A PR P . .
N 0 Vo LI) . 4 .
. N . e JEN oo
R v v e TetLt
, . - RN . d P .
e N . Pa e e . L o fa
AL O AP I AT . P
252" : : ' . I .
S | - = [e DRI ~uf Ta

) moment, 80 we need a command which will transfer us from the current domain

P file to a new one, If we are currently testing projecti, and we want to
*t: switch to documenting project3 we might type ff
Y cd document3 YT
o
- The effect of the e¢d command is to make document3 the current domain file, to \f-ﬁ'
37, make all the files listed in testing? inaccessible, and make the files 1listed

2_"\: in document3 accessible.

N

T

:: We might choose to have testingl disappear, or to have it pushed onto a domain

;: stack, from which it can be recovered by a 'pod! (pop domain) command. Maybe

N we should also have an explicit 'pud' (push domain) command)

)i._1

{?: Of course, the new domain file used by 'ed' must appear in the current

Yo domain file, so we shall have to modify testing! and document3 so that we can
(‘ execute the 'od' command:

:ﬁ? testingi:

et prog.r - /ub/jon/proj1/progil.r

o data - /uf/jon/data/test1

. obj - /ub/jon/proji/progi.r
prog - /ub/jon/proji/progl

:: def.di - /ub/jon/include/def.1i

{5 next - /ub/jon/domains/document3

'

¥ document3:

~at prog - /ub/jon/proj3/prog3.r

; doc - /ub/jon/doc/doc3. fmt

f{ defs ~ /ub/jon/include/def.1

e defdoc - /ub/jon/doc/def,fmt

;yj next ~ /ub/jon/domains/testing1

fiﬁ Now, when testingl is in effect:
i cd next

;j: switches us to document3, at which point the effect of:
\ji ed next
’;; is to take us back to testingl If we want to do something more than switch

‘ﬂJ back and forth between these two domains, one of them will have to contain the

Y

- name of some other domain file:

I:\l

Ry

.....

“u ..\-

L
Dh el QT

s

(4
LN

¥
&

»

LLNC e, .

Pl:. oy #

|
)

XWX
'-*'.-"‘f'-f\ LN

’ o b
RRASAE

AR 7

LN s 8 R AD S

e AT Al e e e S SRS -2 B At A ik b i~ e B S e e e e g i e AR e o N T M

Page 14 Extending File Systems Appendix A
testingl:
prog.r = /ub/jon/proji/progil.r
data - /uf/jon/data/testi
obj - /ub/jon/proji/progi.r
prog - /ub/jon/proj1/progl
def.1 - /ub/jon/include/def.1i
next - /ub/jon/domains/document3

other - /ub/jon/domains/testing2
'Other' is the name of another domain file we might wish to use.
testingi:

prog.r - /ub/jon/proji1/progil.r
data - [uf/jon/data/test1
obj - /ub/jon/proji/progil.r
prog - /ub/jon/proji/progi
def.1 = /ub/jon/include/def.1

next - /ub/jon/domains/document3
other - /ub/jon/domains/testing2
out — J/ub/jon/domains/master_domain

0ut' is the name of some top-level domain file containing (perhaps) the names
of all the domain files we would consider there:
master_domain:

testing - /ub/jon/domains/testing1
testing2 - /ub/jon/domains/testing?2
testing3 - /ub/jon/domains/testing3
document1 - /ub/jon/domains/document?
document2 - /ub/jon/domains/document2
documentl - /ub/jon/domains/document3

runi = /ub/jon/domains/runi
run2 - /ub/jon/domains/run2
run3 = /ub/jon/domains/run3

We might say that 'master_domain' is the 'root' of the domains,

We can structure our work as we structure our file system, by restrict-
ing the domains we can reach from the current domain. It may be highly
appropriate to have documenti as the gnly domain you can get to on exit from
testingi. This would enforce good habits of work,

A.3.4 Rules
File system domains should have the same rules as capability aystem-
s[Cook 79].

Every file listed in the current domain is acceasible,
No file not listed, including other domain files, is accessible.

The domain file, not the directory, gives the access rights to a file,
Access rights should be listed in the domain file. For example:

-2, TN T AR T e Y -
o Ny v BT,
N" :" -t"':*-. PN '" $ ' '\ \'\'-." " s s.'\‘: . _\ ASCLANEN
A
T

tsﬁyﬁﬁkﬁqﬁ#

*r
. RS B R D L
.,A:'._\ SN e e
AN
o e

XY
Y

;
<o
‘I
...
.-
<.
. "
I\'
-.-
o
. ..
'\.
RS
AN
o
.

Appendix A Extending File Systems Page 15

testingi:

prog.r - ’‘ub/jon/proji/progi.r RW
data - /uf/jon/data/testi R
obJ = /ub/jon/proji/progi, RW
prog = /ub/jon/proj1/progi EX
def.1 - /ub/jon/include/def.i R

next - /ub/jon/domains/document3 ED
other - /ub/jon/domains/testing2 ED
out — /ub/jon/domains/mstr _domain ED

glves read/write access to 'progl,r', whereas:

document3:

prog - /ub/jon/proj3/prog3.r R

doc - /ub/jon/doc/doc3. fmt RW
defs - /ub/jon/include/def.i R

da2fdoc -~ /ub/jon/doc/def.fmt R

next - /ub/jon/domains/testingt ED

only gives read access to 'prog3', (You ought not to be able to modify a
program while you are documenting it.)

The domain rights are:

RW - read/write data o
R - read data RN
EX - execute data oo
ED - enter domain
RD - read domain N
WD - write domain NOA

Rights on domain normallr only allow you to enter it (ED). You are not ;23&
allowed to read or edit the current or any domain file unless you have RD or :;ifﬁ}
WD access to it, and this must be specified in the current domain file. For g
instance: '

master_domain: ij{ji
testingt - /ub/jon/domains/testi ED RN
testing2 - /ub/jon/domains/test2 ED =
testingl « /ub/jon/domains/test3 ED MRCNE
document1 - /ub/jon/domains/doci ED NS
document2 - /ub/jon/domains/doc2 ED AN
document3 - /ub/jon/domains/doc3 ED S
runt - /ub/jon/domains/runi ED R
run2 - /ub/jon/domains/run2 ED rne
run3 = /ub/jon/domains/run3 ED -
testingl - /ub/jon/domains/testi WD

testing?2 - /ub/jon/domains/test2 WD
testing3 -~ /ub/jon/domains/test3 WD

allows you to enter several domains, and also to modify testingl, 2, and 3.

Otherwise, the domain files should be unwriteable to the user. He
should not be able to change his current domain setup informally.

Extending File Systems Appendix A

However, once you have modify rights on a domain file, you can change it
with the editor.

Domain enforcement is performed by the file system 'open'! routine. This
routine is modified so as always to look in the tourrent' domain file and
translate any filename string given it according to that domain file. If the
string supplied to fopen' appears in the domain file, it is located on the
network file system and opened, but only with the access permissions allowed
by the current domain. No file not listed in the current domain is opened,

and an error is returned to the user on failure.

This is a more extensive change than simply to use templates and
absolute pathnames, which can be done with the present system.

The tourrent! domain is that in /ub/jon/domains/current.

The effect of the:
cd new_domain
command is to perform a:

cp /ub/jon/domains/new_domain
/ub/ jon/domains/current

The effect of 'push?:

push_domain new_domain
is first to stack /ub/jon/domains/current, and then copy
/ub/ jon/domains/new_domain to /ub/jon/domains/current.

The effect of ‘'pop! is to pop the domain stack into
/ub/ jon/domains/current, losing the current contents of
/ub/ jon/domains/current.

Domains can be created when the current domain has CD (create domain)

permissions. A domain file entry (capability) can be created for any object

the user owns.

A user can share objects, including data files and domain files, with
other users.

A user's domain file can be sent to another user, with or without
changes (restrictions) on the permissions on its lines.

When new objects are created, a side-effect is the appearance of a new
line for the new object in the current domain file.

Yl el le s

LR §

-

L} 4
l{._-.‘.l{.l“l

KPP e
.4

."."'l" ';.q']

L
‘._ l'. i l._ l’_ l‘- .,

Yy

- (AN

Ff‘

A A
- -q';'/‘.' S

4
.

| WA I .y’v’-"'(l'l'
1as N PRI L g
RAARINRILH' GBI

68
Sl S
L R

s €S

2
2.2

XN
LY

N
A

Appendix A Extending File Systems Page 17

This new line can be moved to another domain file if that file is acces-
sible from the current domain (directly or indirectly).

Each domain file for a user appears in a given directory, say 'domains’.

Then the effect of a change domain command is to copy the named domain
file into /swt/vars/user/.templates

The routine ‘expand' already looks at /swt/vars/user/.template when it
encounters a pathname containing =string=. Expand then has to be modified to
assume that all pathnames which are given to it need to be expanded. Expand
will look in the gcurrent templates file (the current domain) and perform
transliterations according to the contents of the file. Strings which do not
appear in the current domain will not be transliterated, and error will be

returned.

A.3.5 Command files
So far we have only mentioned data files, while in fact we could also
deal with commands in the same way.

In most systems, each user has a (static) 'search rule' which records
the order in which the command interpreter should search certain directories
for the commands that he runs, When the user invokes 'emd', the command
interpreter will run the command of that name which is found earliest while
searching the directories in *'searoh rule'.

In a domain-based file system, each domain file can clearly contain a
new 'search rule' and that means in turn that while using another user's
domain file, you also inherit his 'search rule'. To a very large extent, this
means that you become that user, since you not only process his files, but you
are constrained to process them in the same way as he, and using the same com-
mand libraries,

A.3 UNSOLVED PROBLEMS
We now consider some problems which cannot be solved without some
changes to the underlying system,

A.8.1 More Binding

We mentioned above that some context problems can be avoided by wusing
absolute pathnames at all times, but this depends on the absolute pathname
feature being available. Files are somewhat unusual objects in having path-

...................

..................

......................

l'

s e
.I{I' NN
NN

.
[/

0 s
Yy,
%

X
A g 4
0

wor
*r
s

st

o TEE
s 434

‘ll@c,

v
Jo N

gk TR
. . A
. ', . [‘]
e L L ..
r b « &8 9
* ‘s .l 'l * "
’ ’ ' .
(P B A0

l;rf.'{s'
RSN &
f"/l,f

ﬁ,ﬁ,
ple
£ 2
£ L

3

Page 18 Extending File Systems Appendix A

names. Most local operating systems do not generalize naming concepts to all
objects. There is no multi-level pathnames translation scheme such as file
pathnames, for library programs or physical devices (although these facilities
do exist in some local operating systems, such as Multics),

A.4.2 Yariables

Some command languages have both local and global command variables,
which raises an interesting question in a distributed environment; where
should they be evaluated? Local variables are defined only in the activation
of the shell program in which they are set, while global variables are
associated with a user rather than a shell program (and they are stored in a
yariables file when he logs off). He can also save them at any time using a
Save command language command.

This raises the question of the 'scope' of variables., Supposing that a
process on A spawns a remote process to run on B, presumably the variables
file of the user is exported to the remote process, What happens if a
variable is changed?

echo [varal
set@B vara = newvalue
echofA [vara]

What happens if a variable is changed, and the remote command line invokes a
'save' function on the variables. Does this cause the new variables to be
saved? And then can the original job on A also do a 'save'?

A.4.3 Command Language Functions
Command language functions can return a single sucoess code directly in

such a way that it can be evaluated in a command language 'if' statement.
This means that the command line:

if [function] then S1 else S2;
executes command language statement S1 if [function] returns TRUE and 82

otherwise.

This is going to have odd results unless [function] is executed on the
same machine as the 'if', If the 'if' assumes different context information
to that assumed by the function (for example, a different interpretation of
relative pathnames) then there will be an inconsistency.

A.3.4 On~Condition

Some languages allow events (conditions) external to a program to be

x::\:;“-‘.-- ‘:.,

-
'» " a

ILJ.'JA!

P A Y T I) P4 P T R
. PR . L ST DU
.r PRI A I
PE A TR A . D
- 2 e v o PR T
N 1 ..I-! LA

a f
]
PR W Y g 1Y

1,
LD
A7/

=’

3

'IRT
A
..l- 1

PR

,.,
.
.

g MR
l' .

L L Y
BAIE o g

-y -

3 R
N

% Appendix A Extending File Systems Page 19 '

3

:i signalled to it in the form of a software-implemented interrupt. It is

o interesting to speculate what would happen if we declared an on-conditon on

;ﬂ one machine and raised the condition on another.

o A.4.5 Concluaion

63 Other problems in extending single-machine systems to run on multiple

R machines are easily solved by adding extra software over the original operat-

> ing systenm.

~

Some problems are not so easily solved, either because of addressing

& &

deficiencies, or because results have to be returned to an indeterminate

-

location.

S = e

fa_ 2 X]
P

L a A

hHS

T . -
NIRRT RE AR RN

RN 4.

DK

b g

A

S %S

b
T

"
’ " - .* l.. l' { -
) J'\-‘FE' rro? '.-.:_\ -~
« DS 2 LA
o’ < / v

» 5

[DSWT1]

[Andl79]

[Kier81]

[Lind81]

[Need79]

[Oppe81]

[Thom78]

References

REFERENCES

Myers, et al. Initial Experiences with a Distributed System,
Unpublished draft.

Andler, S. Synchronization Primitives and the Verification of
Concurrent Programs. Proc. 2nd Int. Symposium on Operating System
Theory and Practice. North-Holland, 1979.

Kierbutz, R. B. A Distributed Operating System for the Stony Brook
Mul ticomputer. Proc. 2nd International Conf. on Distributed Comput-
ing Systems. April 1981.

Lindsay, B. Object Naming and Catalog Management for A Distributed
Database Manager. Proc. 2nd International Conf. on Distributed Com-
puting Systems. April 1981.

Needham, R. M. and Lauer, H. C. On the Duality of Operating System
Structures. Proc. 2nd Int. Symposium on Operating System Theory and
Practice, North-Holland, 1979.

Oppen, D. C. and Dalal, Y. K., The Clearinghouse: A Decentralized
Agent for Locating Named Objects in a Distributed Environment. Xerox
Office Products. October 1981.

Thompson, K. Unix Implementation. Bell System Tech. Journal. Vol 57,
no 6. July 1978.

Appendix B Command Interpreters

APPERDIX B
INTERPRETING AND COMPILIRG COMMAND INTERPRETERS

N. J. Livesey

B.1 COMMAND INTERPRETERS

A command interpreter 1is a program which typically establishes the
interface between the user and the operating system performing a translation
from the input commands into the form which the operating system understands.
We contend that there are, in fact, two rather different forms of command
interpreters, those which execute commands directly (which we call “compiling
command interpreters,") and those which, because of a gross mismatch between
the world as the user sees it, and the world as understood by the operating
system, have to intervene at almost every stage of the execution of the user's
commands (which we call "interpreting command interpreters®),

This note is a proposal for a compiling command interpreters for use on
an FDPS (Fully Distributed Processing System).

It first examines the differences between interpreting and compiling

command interpreter's, especially with respect to their f'computational power!
and the run-time overheads that may be expected from each.

It then argues that it is possible to produce a command interpreter of
the compiling rather than the interpreting kind for an FDPS and supplies a
theoretical framework for such an interface.

It finally suggests a method of implementation for a fully diatributed
compiling command interpreter.

B.1.1 Compiling Yaraua Interpreting

In this section we define the two kinds of command interpreters. An
Anterpreting command interpreter is a command interpreter which is invoked to
carry out each individual command on a command line. A compiling .command
Anterpretear is a command interpreter which is invoked to scan a command line,
compile it into some intermediate representation, and issue the intermediate
representation to the operating system in one step.

"r‘.f"""/'v' . ‘

v

v, 7,
A
e

Page 22 - Command Interpreters Appendix B

B.1.2 Command Line Execution

In this section, we explain how the two kinds of command
interpreter's would handle a simple command line:

fmt file.fmt | os | sp
This command line is a 'pipeline' (a sequence of operations in which the
result of one operation is immediately "piped" to the next operation) which
calls three commands in series. 'Fmt' is a text formatter, 'os' is an over-
strike and underscore processor, and 'sp! is a line-printer spooler. The file
'file.fmt' 4is dinput to the formatter. The command line is a pipeline in the
sense that:

1. The commands ‘fmt', 'os', and 'sp' are filters, programs which
will take a continuous stream of input, perform some trans-
formation on it, and produce a stream of output which can be
'piped' to another filter.

2. The output from one command can be redirected to be the input
of another filter, or to some file or device. In this example
the output from 'fmt' is piped to the input of ‘'os', and the
final output of 'sp' goes to a line-printer,

A interpreting command interpreter would handle this command line by
first parsing it to find its three pipeline nodes (fmt file.fmt), (os), and
(sp), and would then run the first, the formatter, directing its output to an
intermediate file 'tempt', then, when the formatter terminated, run 'os' with
"temp1! as input and 'temp2' as output, and finally run 'sp' with 'temp2' as
input, and the line-printer as output.

The compiling command interpreter would parse the command line in the
same way, but would then cause the operating system to set up a separate
process for each command line node, with inter-process communication 'pipes’
between successive nodes, and allow the node processes to run concurrently,
communicating through the inter-process communication 'pipes'.

B.1.3 An Aaide -~ Proqesses and Proqesses

One reason for the difference in these two modes of operation lies in
operating system structure, in particular the treatment of processes. The
process primitive in a system can be identified with (at least) the user or
with a task. For example, in Unix, a process is identified with a task. It
consists of an identifier, an address space, input/output ports, and a process
state, so that it can be separately scheduled. Unix processes can create
other processes, or can arrange to run a new program in the address space of
the current process, destroying the program presently running there. They can

- .
.......

...........

ny AL SLSESRAREAN
a i 1'} LA l':. - -'_\ -'_\ .'_\ .

e
A
T
Cd
E;
Cal

Appendix B Command Interpreters Page 23

also communicate with any other process whose identifier they know. Inter-
process communication can be through memory buffers. A user can have several
inter-communicating concurrent processes running on his behalf. In
particular, his command interpreter can create several processes from one com-

mand line to run the elements of a pipline concurrently.

In a system in which 'process' is identified with the user, a process
represents the entire state of an on-line user, and might, for example, be
tied to his terminal, and contain his command interpreter running in shared
system space. If the wuser runs a new program, it i1s loaded and run in the
address space of the 'user' process, replacing (and destroying) the previous
program run there rather than being run in the address space of a new
concurrent process, and there is little idea of inter-process communication,
except through the file system. Successive programs running in the user
process communicate by writing intermediate files, and one program has to run
to completion, and close the intermediate file which contains its results, and
exit, before the next program can open that intermediate file and read it as
input.

B.1.4 A Stack Command Interpreter
There is an intermediate form of command interpreter, found in the SOLO
operating System,

In the SOLO operating system the single 'user' process meintains a
'‘program stack' so that one program running in the process can invoke a second
program, at which point the first program will be suspended, rather than
destroyed, and its state pushed on the program stack. The second program in
turn can get itself en-stacked by invoking a third program. And so on,

At some point, a program terminates, and then the top program state 1is
popped off the stack, and that program is resumed. At any time, the stack

represents the states of several suspended programs.

B.1.5 Computational Power
One can show the differing power of the kinds of shell, by considering
them as computational machines. Intuitively it seems that:

1. A single process command interpreter is equivalent to a Turing
machine with a one-way read-write head.

2. A UNIX (multi-process) command interpreter (called a "shell")
is equivalent to a Turing machine with a two-way read-write
head.

M A I T s ST St Aaies e B g ot - e o
. vt T e .',“‘.i
et

ot

“
i
_—

A A LI

o
¢
T e Y

FS T

Bl B
ot e

N AN

v
R

AL A

Page 24 Command Interpreters Appendix B

3. The SOLO command interpreter is equivalent to a Turing machine
with a single pushdown.

Cases 2. and 3., are the same power, but case 1. has lesser power. In
particular, case 1. does not allow pipeline elements to be connected by pipes
in two directions. All single command 1lines have to be capable of being
serialised. (Although, of course, one is allowed to execute a single command
line several times by 'looping'. This involves re-executing the individual
commands of the command line pipeline). From now on we forget case 3.

B.1.6 Elasped Iime
There are some obvious differences in elapsed time to execute the same

command line,

1. Does not allow the exploitation of concurrency (parallellism)
in the pipeline.

2. Where concurrency exists, it can be exploited. In a single-
processor system pipeline elements which do not depend on one
another can run in any order, but concurrency need not lead to
any elapsed time saving. In a multiprocessor system one can
get true physical concurrency.

B.1.7 Qverhead
We can try to evaluate the overhead incurred by the two forms of command
interpreter!'s., The total overhead is made up command execution time (which
should be the same in any system), shell overhead, and inter-process com-
munication overhead.
total _overhead = command_execution + shell_overhead +
inter-process_communication_overhead
Bs1.T.1 Command Execution
Total command execution time should not differ, whether commands are run
serially or concurrently. Call this time 'C', This might be affected by

swapping and paging.

Be1.7.2 Command Interpreter Overhead

An interpretive command interpreter will be reinvoked as each element of
the command pipeline terminates (or at least some component of the command
execution code will be reinvoked).

A compiling command interpreter is invoked only when the command line is
parsed, and when the entire line terminates., The overhead is then

1. overhead = 0(n)

2. overhead = 0(2)

P YA
-(‘.'.{‘

B

c."a...".."' by :v :'

IR AL

PR
SL LN L
A AANA

Ceud e

Appendix_B Command Interpreters Page 25

where n is the number of command line elements.

Be1.7.3 Inter-process Communication Overhead

We can try to evaluate the inter-process communication overhead incurred
by the two forms of command interpreter!s. In either case, interprocess com-
munication involves transferring each block of intermediate results from one
program to the next, or from one process to another. However, in the case of
successive programs running in the same process, the intermediate results must
be written to a disec file, which must then be closed before the next program

can open and read it.

In the case of concurrently running processes the intermediate results
can be buffered, block by block, through central memory.

From previous results obtained on the MININET project, writing to the
file system costs around 1000 ms per block, while buffering through central

memory costs around 1 ms. per block. Then we have:

0(1000%m)
0(m)
where m is the number of blocks of intermediate results transferred.

1. overhead

2. overhead

B.1.T.4 Total Overhead
Combining the results of the previous two sections given the total over-

head incurred by the two forms of command interpreter's.

1. total = C + 0(n) + 0(1000%m)
2. total = C + 0(2) + O(m)
B.1.8 Summary

The difference in elapsed and total time is clear, even for a single
processor system. For a multi-processor system we conclude that a compiling
command interpreter, capable of taking advantage of the parallelism in a com-

mand line, is necessary.

B.1.9 A Diatributed Cosmand Interpreter

For purposes of comparison, here is an outline of an interpreting com-
mand interpreter for an FDPS. The basic ideas are:

1. A command file can be parsed once and for all to produce a
graph whose nodes are individual processes (We take the view
that processes are tasks, not users), and whose directed edges
represent inter-process communication data flow.

EOEER R RN A A R Nllle* et e et e A S A AC o AR 2 o o -—,_.-;'-1
-

by

Command Interpreters Appendix B

2. The graph can contain choice (i.e. decision and/or selection)
nodes and iteration. (The command file lines are not neces-
sarily serialisable.) The graph can contain ochoice (i.e.
decision and/or selection) nodes and iteration.

3. In order to exploit the parallelism inherent in the process
graph and also present in the particular hardware oconfigura-
tion on which we are currently running, we must be prepared to
distribute a representation of parts of the process graph to
the processors on which particular processes are to be run.

4, 1In order to distribute the information contained in the graph
we treat each node as a single unit and attach to each node
(representing one process) exactly the information needed to
connect that node to its neighbors in the original graph and
to handle any synchronization which may arise. Its neighbors
in the original process graph are those process nodes to which
it was connected by inter-process communication flow edges.

5. Then we call resource allocation and sork distribution in

order to find out where each process is in fact to run.

6. We then send the connectivity information for each process to
the processor on which it is to run.

7. Finally, distributed control will use the distributed connec-
tivity information to set up Inter=process communication
between concurrent processes in a given processor and inter-
process communication between concurrent processes running in
separate processors.

The rest of this document suggests ways of parsing a command file into a
process graph, and ways to distribute the oconnectivity information so that
Distributed Control can use it on physically separated processors.

The dinformation which 1s distributed so that local elements of
Distributed Control can run the complete command file comsists of IPC ‘tokens.
Two tokens, a gsend and a receive token, are semt out for each edge in the
original Process Graph.

J

19
-

N
(S
\

x

px ", » L
1 !
. T

We have not specified exactly what process graph edges represent, apart
from representing IPC. A single edge might represent a yrite-read pair, a
communication line, a message buffer being sent, a synchronizing signal, or
the action of one process creating another. All that we require is that an
edge has two end-points which are processes (We do not even require the two
processes to exist at first. Perhaps one of the processes is being created,
or dying).

For an edge, we distribute the asend token to the process which is
initiating the IPC transfer represented by the edge, and the recelve token o
the process which is the object of Lhe IPC transfer.

KA P At '_~‘-'..". ".. _._‘... 3

e T T L T e
I N A P R R PR
ANHERA /2o, SER RIS R 6 5% "ihr}.a:':-:‘.- AR RN A

........

RREREDFRIS JCAL SIS IO A A it et it it ARt
; TFTETEF IR

Appendix B Command Interpreters Page 27)

Distributed Control uses the tokens at run-time to implement distributed

system control.

B.2 PROCESS GRAPH COMPILATION
B.2.1 Progceas Graph Language

A command file can be represented as a graph, with processes as nodes
and inter-process communication represented as directed edges. This graph can
be specified in a specialised programming language, the Process Graph

Language.

The translation of a process graph proceeds in six stages:

1. Specification of the process graph in process graph descrip-
tion 1language. This language is described in the next sec-

tion.

2. Parsing of the process graph description language program.
Detection of syntax errors in the process graph description
language program.

3. Construction of the precedence graph from the process graph
program. The precedence graph is a directed graph whose nodes
represent IPC, and whose edges express the precedence
relations between IPC. This will be explained further below.

4§, Checking of the precedence graph. Detection of semantic
errors in the process graph description language program

5. Translation of the precedence graph into IPC tokens. Tokens
are used at run-time to enable the operating system to enforce
the precedence relations between IPC which were laid down 1in
the process graph.

6. Distribution of the processes of the process graph, along with
their IPC tokens, according to instructions issued by Resource
allocation and work distribution.

7. Run-time enforcement, by Distributed control, wusing the IPC
token lists,

,
l'l‘.'
AR SIS
.'I’M'l‘.a *
A AL

M A
r

o .
Ao I
iX@o'e

B.2.2 Proceas Graph lLanguage Grammar
Here 1s a simplified grammar of the PGL. This is not intended to be a

comprehensive definition of the grammar; merely a summary around which to
build a description of the process graph description language compiler. For
the full grammar see [Livesey 6]. The semantic actions to be taken upon the
satisfaction of each production are given in the right-hand column below each
production as a section number, referring to the rest of this section.

o ey
;f- Page 28 Command Interpreters Appendix B iii“i
& Production Sectdon Number e
'$$ <process graph> ::= 'begin' <pg head> <pg body> 'end!' B.2.2.1 : iﬁ

V‘T‘ l‘l

<pg head> ::= <prog def>® <process def>® <{type asg>® B.2.2.1

-~ <edge def>*®
u:.\.
:}; <pg body> ::= 'begin' <stmt list> 'end! B.2.2.1
Y
i <prog def> ::= 'prog:' <prog ident> '==' <string> B.2.2.1
B <process def> ::= 'process:' {process ident) '==' B.2.2.1
;:} <{prog ident>
o <type asg> ::= 'trans:' <ident list> B.2.2.2
pa ‘root:' <ident list>
N ‘perm:! <ident list)>

tgraph:' <ident list>
'edge:' <ident list)>

» Ld

.

e Cedge def> ::= <edge ident> ':=! B.2.2.3

Ry <{process ident> '==>' {process ident> |

N <process ident> *creates' <{process ident> |

o <process ident> 'dies' -=> <{process ident> |

L <process ident> 'signals' <process ident> |

\::::: <p!‘08 ident) HE '81' Inoncacoulo' 'Sn' 3020203 ..-:
::ﬁ <{process ident> ::z 't1' |..cccccueel 'tn? B.2.2.3 =3
*-._::: <ed8e ident> ::= tel! Icooco-oo.‘ol ten! 302'203 ’:::
¢ <stringd> ::= "t 1M B.2.2.3

N <stmt list> ::= <stmt> | <stmt 1list> ';' <stmt> B.2.2.4

::§E <stmt> ::= <{concatenation> | B.2.2.5

A < binding > |

o <concurrent> |

. <{procedure call)> |

N <choice> |

P <iteration> |

S <edge ident>

;Yﬁ‘ <{concatenation> ::= <stmt> '<' <stmtd> B.2.2.6

o <concurrent> ::= <stmt> '“' <stmt) B.2.2.7

::: <{procedure call) ::= <proc name> *(' <atmt> ')' B.2.2.8

P

f:?j <choice> ::= 'if' <{expressiond> *thén' <stmt> | B.2.2.9

e;t, vif' <expression> 'then' <stmt)>

e telse' <{stmt>

7 <iteration> ::= 'while' <expression> 'do' <stmt> B.2.2.10

2

NG

oy

Py

&7
IR
el

'’
N PR\
o I'D ny

R Y _F_F B YR E
Py ’

[
L

“~
Wy A VORI A A
\\ \l‘. . .o‘l ¥ N 8

<, -
W L e e mra AT R AT S PR . . T TP P - .
SN O, N R T e R L O O IR S
SRR N0 AL 5 CRUAGAANA A M AR Y A AT S RO ARSI RCA
ol --”Q" i\f\ -. ‘."\"-':\"-'.\ O N S A I Ry
1)

...

42 Appendix B Command Interpreters Page 29

RN We begin by building a very simple process graph from a command file
__; definition, and showing how it might be handled across several machines:
(a begin

- prog; progl == "=bin=/fmt",
R prog2 == ®"zbin=/0s",
o prog3 == "=bin=/sp";
. proc: proct == progil,
%

s proc2 == prog2,

: proc3 == prog3;
N root: proci;

trans: proc2, proc3;

o edge: edgel, edge?;

SO edgel := proci creates proc2;

A edge2 := proc2 creates proc3;

\ edgel < edge2;

- end;

;S In this example, we have described the creation of three processes in
i: series, Process 'proci', which runs the program "=bin=/fmt", creates process

'proc2', running program "sbin=/0s", which in turn creates process 'proe3’,

:?{ running program "=bin=/sp®. The '<' symbol expresses the order of creation.
.*\'.

i}; The exact form of the 'process graph' does not matter, but it might look
>3 something like:
{

o l I | | | |

o ! | creates | | creates | |

o ! proel | eccccacea > | proe2 | cccccme- > | proe3 |

- | (fmt) | | (os) | | (sp) |

- | | | ! | !

_ I I | !

2; Enthusiasts of cryptic systems will protest that all this could be more
js succinctly expressed as:

oa fmt | os | sp

My only answer is that my lengthy syntax expresses what is actually going on,
and that in any case, it can be collapsed to a coryptic form as needed.

Note that as yet we have only expressed process creation, and nothing

RN '-" (‘.

J = A

about the inter-process communication between them, That will come later.

Finally, we assume that the three processes run concurrently on one

X

machine, or on several,

X

In the next sections, we explain the grammar step by step, and then

¥
4

expand the example to be more realistic., First, we explain the actions to be
taken upon parsing. The explanation is top-down, descending to greater

SRt

.

............

C " aT e .
......

...........

Page 30 Command Interpreters Appendix B

2,

{edge def>*
the building of the symbol table is terminated, and the parsing of the process

-

e

o detail.

o

e B.2.2.1 Process Graph

(: In parsing we build up a symbol table, containing the definitions of the

:::j-' program files, processes, and IPC edges, and a precedence graph, which defines

:I:-; the precedence relations between the edges of the process graph.

e Upon recognizing: y

el <process graph> ::z= 'begin' <pg head> <pg body> 'end' S

:3 the parsing of the process graph description language program is terminated, '.:j-_

:j: and the precedence graph constructed (see below), is processed to produce IPC L; .

N4 token 1lists, Roate
;._-. '.
FO, |

X v Upon recognizing: Oy

i_t: <pg head> ::= <{prog def>® <process def>® <type asg)® ::j-::f::::

v‘i"‘ll

. graph body is begun. If a symbol is encountered at this stage which is not
‘: defined in the symbol table, it is treated as undefined.
ARN
e In our example, the <pg head> is:
begin
L prog; progl == "=zbinz/fmt®,
-2 prog2 == "=bin=/os",
.;-';_4 prog3 == "=bin=/sp%;
"- proc: procl == progl,
.-::. proc2 == prog2,
proe3 == prog3;
Y root: proci;
"l trans: proc2, proc3; k ;’~:
X edge: edgel, edge2; AT
-3 edge! := proci creates proc2; KA ek
et edge2 :z proc2 creates proc3; NS
end; N
- Upon recognizing:
S <pg body> ::= 'begin' <stmt 1ist> 'end'
.:'{ the parsing of the process graph description language program has terminated,
' and the precedence graph has been built,
: For the example above, the <pg body> is the single expression:
3‘:: edgel < edge2;
gl‘ The symbol table contains an entry for each program file (code segment),
y process and edge in the process graph description language program. In this
3: . table, file system pathname strings are treated as predefined, program files
\"2
L
X9

Appendix B Command Interpreters

are identified by their file system pathname, processes are defined in terms
of their constituent program file, and edges are defined in terms of their

sending and receiving processes.

For the process graph description language construct
prog: progl = "prog name";
which satisfies the grammar rule
<prog def)> ::= 'prog:! <prog ident)> '==' <{string>
we add a node to a linked list of program file definition nodes.

The node contains both a pointer to the program file identifier, and to
the string name of the file in which the program file is contained.

A process definition node is added to a 1linked 1list of process
definitions when the rule:
<{process def> ::= 'process:' {process ident> '==' <prog ident>
is satisfied. Every process is defined in terms of its code part; its program

! v | (process)

|process|

| &proc }====> "proci"
]

jmmeeem-| —
| &prog | > | prog | (program file)
e | |mm————
| | | &prog |=——~> "prog2"
R |me—eana]
v

| &name=|==ecaa=)> "=bin=/fmt"

.,
LN

KL ICA IR

5

« I
o'l' Y
. - .
® s ¥ ‘
<
e lgt
2y

]

v

Xy
e

v

B.2.2.2 Type Assignment
When the grammar rule:

-
CYary

Command Interpreters Appendix B

{type asg> := 'trans:' <ident list)>
'root:!' <ident list)>
'perm:' <ident list)>
Tgraph:' <ident list)>
'edge:' <ident list)>

is recognized, process type is assigned. There are two cases; processes which
already existed when the process graph was created, and processes which are
created during the processing of the process graph. Pre-existing processes
are of two kinds; permanent processes, which exist outside the current process
graph, and the root process of the process graph, which is created by the
process graph supervisor (a component of Distributed Control) in the course of
process graph execution. These are declared:

perm: processi{, process?;
root: process3;

Typical examples of pre-existing processes are resource processes, which
are permanently in existence, and can be included in any process graph
authorized to access them. Pre-existing processes do not need to appear as
the receiver of a create edge. All transient processes appear as the receiver
of some create edge.

Created (or 'transient') processes come into existence during the execu-
tion of the current process graph. They are declared as:

trans: processl;

Every created process must appear as the receiver of some create edge in
the current process graph before it can be used as the sender or receiver
process in a non-create edge. The program file pointed to by the 'prog' field
of the definition node of a created process is used at run-time to create that
process:

——
L
]

Iprocuss|
[]

| &t ==|eawe=d> "proo2"
]

| &prog | > | prog |

| | | &prog |=—==> "prog2"

v | &name~|eeewme=) "ebin=/os"

v

{ Appendix B Command Interpreters Page 33

Until the edge which has the creation of this process as side-effect appears
in aprecedence expression, the process is marked as '"not-yet-created' in the
symbol table. If it is used in another edge before it is created, a compile- .
time dlagnostic is issued. After the creation of process 'proc2' from program ::$7~
file prog2, 'proc2' can be referred to in process graph description language i
statements as any other process. C?:*4

A rode in a process graph may be another graph, rather than a process,
and a mesage or signal may be sent to a graph in the same way as to a process.

B.2.2.3 Edge

There are also two cases for edge. In the first case, the edge
represents a gsend to an existing process, and in the second, a send which
creates a process as a side effect. The first is called a send-append, and
*\; the second, a send-create.

A jsend-append is the transmission of IPC from one already existing
process to another. The node which defines the edge therefore points to two
process definition nodes, which must both refer to existing processes; either
pre-existing processes, or created processes which have already been created
in some edge in the current process graph program. The grammar rule to be
satisfied is:

<edge def)> ::= <edge ident)> ':=!
{process ident> '-=>' <{process ident>

The edge el is from process2 to process3, both pre-existing processes,
and so the format of this edge node will be:

| & om]ewmww) Medgeln

;&ﬁ | proe -!| > lprocess|

J

]
] e .
- | proc =!=e=-=> |process| | proec | -=> "process2"
A o |m—————— | e el
!F% | | | proe ={-=> "process3" | |
A e |memeeee | |eemmana|
e v | | | l

| | v

J

v
The grammar rule to be satisfied for gend-create is:

(3 EPLI

...............................
.......................
''''''''''''

.....................
....................

n e
.....

LR RN
A R

-

.t A @S AL S

.......

Page 34 Command Interpreters Appendix B

<edge def> ::= <edge ident> ':z='
<process ident)> 'creates' <process ident>

In a send-create, the receiving process is created as a side~effect of
the message transmission. The edge node refers to a sending process defini-
tion node which must refer to an existing process, and to a receiving process
definition node which refers to a created process which is marked as not-yet-
created. At run-time, the program file referred to by the receiving proces-
ses's process definition node will dbe used to create the receiving process.
In the example below, program file "prog2™ will be used to create process

"proc2".
!
Poov
| edge |
|mmmmeae ' —
i proci-| > lprocess|
|mmm—eee] —_——— |eem———— |
| proc2-|~eee- > |process| ! proc |
|memeaee| |me——eee | |emmeea]
] | | |
el B | proc | !
v |meemaee| v
; &prog I-—---) ‘ prog i
{ | | &prog |=>"prog2"
| | | |
Vooo jaae? |eecmae— |
v | |
v

During parsing, & send-create edge is marked in the symbol table as a 'create’
edge, and later, when the edge appears in a precedence expression, the receiv-
ing process which it creates is marked 'created'. If a process not yet marked
‘oreated' is used in an edge in a precedence expression, a diagnostic is
iasued.

The grammar rule for sand-die is:

<edge def> ::= <edge ident> ':=!
<process ident> 'dies' -~> <{process ident>

This defines an edge which has the death of the sending process as a

side-effect. A message is sent from the first process to the second, and, if
successful, the first process dies.

The grammar rule:

't;i Appendix B Command Interpreters Page 35

3

) <edge def)> ::= <edge ident)> 1:z!'
i:f: <process ident> 'signals' <{process ident>
(: defines an edge which consists solely of synchronization information passing

2_ from one process to another in the current process graph, or from a process in

;i: this process graph to one in another. No message is transmitted.

?t; For simplicity, we have given the definition of program file identifiers

. here as:

:%: <prog ident> ::= 'progl' l.ccces.e..| 'progn'
fsis The process graph description language compiler can, in fact, recognize
¥ identifiers of arbitrary length, composed of alphanumeric characters, and

v beginning with a letter. However, in the rest of this section we shall

:;; continue to use the suggestive subset <'progt',22. . .,'progn'>. As process

fﬁi identifier, we have used "processi", "process2®, etc. As edge identifier, we

hﬁj have used "e1", %e2", etc.

77, B.2.2.4 Precedence Graph

.:3 Here we describe the construction of the precedence graph which is built
12? in the course of compilation., It is analogous to an evaluation tree in con-

:* ventional compilation. The precedence graph is a directed graph in which one
‘;-‘ or more nodes are present for each construct of the process graph description
g language, and the directed edges between the nodes express the run-time time
;\) precedence between the nodes. If nodel and node2 are connected by a directed
§§° edge:
g nodel -—> node2
:“ﬁ then nodel precedes node2. The precedence graph may contain loops, correspon-
:S? ding to iteration constructs in the process graph description language.

= B.2,2.5 Statement List

ﬁtj A statement 1list is a sequence of statements S1, S2,..... A statement

Ekg list is represented by a series of connected nodes. :J:i:
oL A statement is one of the following four types. EE§§§
= B.2.2.6 Concatenation ':,_?%%
E;' The construct: 2:253
) 81 < 82 R0
;i: which is represented by grammar rule :iiiﬂ
~ {concatenation> ::= <{stmt> '<'!' <{stmt)>

$: leads to the linking of the first node for S2, to the final node of Si. The

)
2
L S,

‘..; .;...;\.‘\.:_‘.'\.“
¥ {‘_L.:lgl alav e

R - v ' 4 g 2 St Pt B G4 .
N P O NN TP DR N TR Y - e S N O A S A e e e I e I A 2 Y

A
e
\ Page 36 Command Interpreters Appendix B
o
2y
:' statements S1, S2 can be single edges, or process graph description language
. statements.,
’
N l
L v |
L | edge |
- eommeee |
158 | s1 |
o {——
! |
Jy PR |
-7 !
h
e I A
| edge
~ g---c_lf.-:
.“".
R | s2 |
A : :-----—-
.. ! !
i et
I v
Ak B.2.2.7 Concurrency
:: Each construct indicating concurrent statements, generated by the satis-
.S
E: faction of the grammar rule
AN <concurrent> ::= <stmt> '"' <stmt)>
s is represented by four node groups; a conourrency-begin (”) node, the two
)
-f.: concurrent statements, and a concurrency-end (v) node. For example: S1 " 82
."'ﬁ'\
> |
e I v |
!]
: |omeeee |
.'-:: l Ll] :-—-------- ’
.4':-! ’------I :
2" | |
-2 R P {
"\ l l
‘ I Py
Y | edge | | edge |
N | st | | 82 |
W fmmmmemn | —
) | ! | |
.L‘ '.—-'-—' '--I-—'
> | |
::] !
Foov |
. —
A | [
S| [J]
KA
-
o
"Q
)

X ARA
ARTS

g

e’
e

E a4

...
s

ORI

P

£)
;db}bxﬁ

v

¥ .A‘L

P AR

* e
oS

5t)

Yx
') 'J o 'A ..' '.‘

A

"o

"’

o
T,
“a
L)
AN
i
~
A
A
s_,“

.......

Appendix B Command Interpreters Page 37

The nodes marked S1, S2, represent arbitrary process graph description
language statements. The only restriction is that they should be
with a single entry and a single exit.

subgraphs

B.2.2.8 Procedure Call

A procedure call 4is the principal mechanism for communication between
processes and process graphs. The grammar rule for procedure call is:
<procedure call)> ::z= <{proc name)> '(' <{stmt) ')!

The representation of a procedure call in the precedence graph is:

P v |
| call |
T—
| pro¢ -|eemcacaa > "proc name"
mmmmem e |
| pars -je——-scemea- ’
TR ! |
| | :
el B :
] |
| Poov |
! | edge |
! J—— I
| | s2 |
— |
]]
'___'__-l
v
The "proc" field in the node points to the symbol table entry for the
procedure definition, and the "pars™ field 1is a pointer to the subgraph

representing the parameter list for the procedure call, Most process graph
procedures evaluate logical values derived from edge execution, from system or

hardware error checks, or passed down from processes.

B.2.2.9 Choice

The choice construct is represented by four node groups: Again, S1, S2
represent arbitrary process graph description language statements. The choice
grammar rule is:

<choice> ::= 'if' <expression)> 'then' <stmt)> |
11f' <{expression> 'then' <stmt>
telse' <stmtd>

The <expression> in the if statement can itself be a process graph statement

of the type: single edge, process graph procedure call, or bound expression,

Appendix B

Command Interpreters

B.2,2.10 Iteration
The iteration grammar rule is:
{iteration> ::= 'while' <expression> 'do' <stmt> 'end'

g 1
Iteration is a special case of choice. The iteration construct is represented g:ffﬂ
as follows: ~ﬁ{;§i1
SN
! -l-'_-I-‘-.'-;
by]
S S , e
[mem——— ! ! e
! cond-| > ! B
e | |
L T PR , [
[— ! x [
{ F ! : :
U : :
! ! |
| ooy !
! | edge | |
| jm————— | |
! s2 | |
] |
! |
| !
! '

Condition and S2 represent arbitrary process graph description language
statements.

B.2.3 Iranalation from Iask Graph io Pregedence Graph
In the task graph description language there are specification

statements, assignment statements, and expressions. Specification statements
have been dealt with above. Assignment statements are used in building the
individual nodes of the precedence graph. The precedence relationships
between edges are spcified using expressions, using the operators '°', <1,
Expressions may be nested using '(', ')'. As these edge precedence expres-
sions are parsed, a 'precedence graph' is built which is analogous to the
expression tree built during the parsing of arithmetic expressions in an
algorithmic language such as Algol or Pascal.

. v .
..........

ANELA ML EREARLE ASIUEL R Gt CACLE N NEATAR A AC R Aot it Rl It R S A IR\ SN A SR e A A VN U AL A £ 0 L e s
2
. .
.
\ Appendix B Command Interpreters Page 39
0y
‘ -
5
e o Edge_~_<exp>_::= <edge>
IR

Each time that an edge is recognized, a node is created to
represent it and its address saved on both the proot and leaf

—
P

s stacks. It will become clear why two stacks are used:

-.':-

83 case <edge>:

N /% create_node() returns the new node's address %/
:\::- node = create_node (edge_node);

- push_root (node);

o push leaf (node);

ot break;

::'.j_ We shall describe algorithms wusing their ce language
i representation (see, for instance [KERN\ 3]). In this language,
brocedure invocation has the syntax:

~.~-- procedure (parami, param2,....);

;:lj while the selection of an element from a data gtructure has the
syntax:

\'l-

:-fj structure -> element

y ® Precedence_~_<exp>_::=_<exp1>_'<'_<exp3>

f-._' Each time that a precedence construct isrecognized , we are
-"_ required to set up connecting edges (representing time
::-.;‘ precedence) between two subgraphs in the precedence graph, one
-?_.' representing <expi>, and the other representing <exp2>. As
. <exp1> and <exp2> were recognized themselves, their root and
leaf addresses were pushed on the root and leaf stack, so at
‘v:.:- this point, the top elements on the root and leaf stacks are the
o root and leaf addresses of <exp2>, and the second-from-top are
-'] the root and leaf addresses of <expi1>. We have to pop these
o addresses, link <{exp1> to <exp2>, and push the rootand leaf

' addresses of the linked subgraph representing <exp1> '<' <exp2>.

N case <precedenced:

» temp = pop_leaf();

MIN last = pop_leaf();

a7 next = pop_root();

o last -> fwd_ptr = next;

o next -> parent = last;

push_leaf (temp);

e break;

7

@)

.:_:.’

.

i

N

o
e R T e e R A U N
---------------------------- . A -~ R NACYAN . *, . N‘-'\"i.-\ hq"‘.‘ v

Page 40 Command Interpreters Appendix B

e Concurrency_=-_<exp>_::= <expl1>_'"'_<exp2>

An operator such as '“' requires more complicated code genera-
tion than, for instance, '+!' or '#!', A %' operator takes a
task graph subgraph as its right and left-hand operands, but
then these two subgraphs must be terminated by a 'v' node which
unites their two lower-most leaves. The expression tree of a
language with conventional binary operators is a tree; that of a
task graph is a double tree. For every '"' which splits flow of
control into two parallel streams, there is a later, matching
'v' node which unites these two streams again. For instance,
the expression

s (e1 < €2 < eb) " (e3 < e7) " e4 " e5
§:§ will generate the following subgraph:

»

L

h SRRCEAR
%~ R

e The essential point is that each opening par begin '"' node
e (parallelism- .begin) must be matched by a closing par end 'v'
- node. It follows that, as well as enstacking the addresses of
v the roots of expression subgraphs as they are formed, we also
! have to save the addresses of the leaf nodes of these subgraphs,
s so that we can later terminate pairs of leaves with a 'v' node.
We therefore employ two stacks in precedence graph building, an
A expression root stack and a leaf stack.

4

[
alaatale’e’e’a

XA
," .‘. . ": ."

< 0t

X,‘
Y
R
- A R
R K
AR CRAER
'y "
. AT
w Jele

At

2
L4
e RN

/

‘
o ’ -, 0 L D S S e AT A LY CUA I A
x jwyﬂ?~\,34xaf ay e e e e T e e e e e e e N e e
--

ﬁ{‘

‘
LA
FLAE W WL e e

b")‘%~" '.

r)

Py
e S
l,'l
«fa’a

s
-
-
.

.\.
LACAC

[)
l’)
X gLf

[

L';"; Calr

r.L, .

. e
..q_f
.

Appendix B Command Interpreters Page 41

o Choice -_::=_'if'_<exp>_'then'_<stmt)d 'else'_<stmt)>

An analogous problem is encountered in building a representation
of an

Af P then S1 elae S2;

This is solved using a similar double-stacking algorithm. In
the case of 'if' however, we have to handle three expression
subgraphs; those for the 'if' condition, the true, and the false
exit subgraphs from the 'if'. Each of these three subgraphs is
enstacked as it is created, and then, upon recognition of

<choice) ::= 'if' <expressiond 'then' <stmt)> |
tif' <expression> 'then' <{stmt)> 'else' <{stmtd>

the subgraphs are de-stacked in reverse order (false, true, con-
dition), and attached to the 'if' node. Finally, the terminat-
ing *fi' node has to have the output leaves of the true and
false 'if' exit subtrees connected to it, and so these two leaf
addresses are de-stacked from the leaf stack. The code for han-
dling if and £i nodes is:

case <choice)>:
node = new_node ("™if");
node -> false exit = pop_root ();
node => true_exit = pp_root ();
node => condition = pop_root ();
{node -> true_exit) => parent = node;
(node -~> false _exit) => parent = node;
push_root (node);
node = new_node ("fi%);
false = pop_leaf ();
true = pop_leaf ();
false => fwd_ptr = node;
true -> fwd_ptr = node;
node ~> falseparent = false;
node => trueparent = true;
push_leaf (node);
break;

A

I T R) N e » L)
Sy Y . %,
LR *y"s” e 5 L o
[K B e’ K
.
LV LA A) .
LT
. s A A . . o .
Pd o’ [N

4" "
. e
f LA

-

.
e’

§
@

* L i

L A
‘s
]

Py
L
v %
f.d am .2

]
‘.

. l” P.'.‘. '/.,
s el
BN)

° 2

Page 42 Command Interpreters Appendix B

o Iteration

The code for <iteration> is an obwious variation on that for
<choice>. The true-exit subgraph connected to the 'f' node has

k‘ its leaf node connected back again to the 'if' node, while the
; o false-exit points to the next subgraph in the precedence graph
o after the while-do.

::f case <while)>:

et node = new_node ('if');

node -> false_exit = 0;

y node -> true_exit = pop_root ();

"N (node => true_exit) -> parent = node;
\ node -> condition = pop_root ();
M (node => condition) -> parent = node;

K push_root (node);

, true = pop_leaf ();

p- true -> fwd_ptr = nod;

by push_leaf (node);

o " break;

XN

il Tl

'.
)".:'.'

\

AR

hy]
o0,

te s dd

5 ey

..
« %o
»
.

.'sl . .
Py XYY,

'

&P '] e PN R e IR Sl SR I - SR T AT et et Tt Lt Y Y,
g o N O L T N e
- - e « Ve . «~ - R DT .
£

o -~ ".'.-'.fd.
COENA S SNSRI

APPENDIX C

THE DESIGN OF A PROGRAMMING LANGUAGE BASED
ON COMMURICATION NETWORKS

Adurthur B. Macoabe
Richard J. Leblanc
C.1 INTRODUCTION
The design and implementation of message-oriented programming languages
has recently become an active area of research. The increased activity in
this area is due, in part, to the increased interest in distributed processing
systems. Message-oriented languages structure programs as collections of
processes that communicate and cooperate using message transmission
primitives. Distributed processing systems can be viewed as collections of
processor nodes with independent address spaces that communicate and cooperate
by exchanging messages over communication channels. Hence, there is a natural

mapping of the units of a program written in a message-oriented language to

the resources of a distributed processing system.

This paper presents the design of a new message-oriented language,
PRONET (Processes and Networks). The goals of PRONET are to provide a high
degree of process independence and a mechanism for describing process hierar-
chies, while obtaining information about inter-process relationships which
will aid in effective program execution. In most message-oriented languages,
relationships between processes must be expressed in the desoriptions of the
individual processes., PRONET has been developed to investigate the separation
of inter-process relationships from the description of processes. This
separation is expected to enhance process independence while isolating
information which will aid in the distribution of processes. The 1initial
design of PRONET concentrates on inter-process relationships that describe
structural aspects of the communication environment used by processes. To
this end, PRONET provides powerful features for describing the instantiation
and dynamic reconfiguration of "communication networks."

8This paper was published in the Proceedings of the 3rd Int, Conf. on
Distributed Computing Systems, Miami Florida, October 1982,

.'-\- A Wa ey [IR LR A S R I [l T Y ROANAD A AN = R S A :
e
- .,, Page U4 PRONET Appendix C ";_"
]
gL C.1.1 Programming Envirouments RN
\J,: PRONET was motivated by a perceived need to aid application programmers
' } in their efforts to use the programming environment presented by a distributed "_‘.—i
':. processing system [Fors81]. Our view of distributed processing systems is ‘.‘_-;:\ '-fj
:}:; based on the definition presented by Enslow [Ensl78] and subsequently refined ~
.j::?_-_')_ by Enslow and Saponas [Ensl81]. To distinguish the systems meeting the ':::::::jji
:“"" criteria of this definition from other distributed processing systems, they —;ﬁ
R have been termed "Fully Distributed Processing Systems" (FDPS). 3
Sod .
‘-E;:E:' For the purposes of this paper, an FDPS is a collection of loosely ,“
::::3 coupled processors that function in a cooperatively autonomous fashion to ""::
\ provide services ([Ensl78], [Clar80]). The processors are autonomous in that
;.::; their activities are entirely controlled by 1local decision-making criteria.

;.::‘: To avoid total anarchy, the decision-making criteria of each processor are

:.:::.;: integrated with the goal of cooperation. This cooperation 1is represented

:__ within each processor by a component of the network operating system (NOS).

_*a The primary function of the NOS is to provide a unified view of the resources

-f‘.,i‘ available in an FDPS. It performs this task by Ilmposing a layer of control

f.__ above the processors which recognizes and respects the autonomy of the
i individual processors. The assumed existence of an NOS appears to distinguish

‘1‘3 the environment we anticipate from that assumed by other researchers. For

\‘}‘ example, upon request the NOS will provide scheduling and allocation functions

:."\: based on its global view of the network. Thus, when a new process is created,

o a program can use the NOS to determine an appropriate phvsical location for
::'- the process.
b3 ¢.1.2 Logioal Communication Netsworks
Programs written in message-oriented languages may be viewed as specify-
__\ ing "communication networks®™, The nodes of these networks are the processes e
? defined or used by the program, while the arcs between nodes represent com- ;E}
:': munication 1links. These communication links are directed and may be used in '.'.‘:;;::_:
SN the transmission of any number of messages. Note: this definition of '"com- ;\\1
\.’.‘ munication network" concentrates on connectivity, other definitions are fg'—"'_\!
;';: possible--for instance the task graphs of [Live80] reflect a definition that ::.’:::S:
: E‘ concentrates on communication sequencing. :S'. -:::i
;’2 Languages that support dynamic reconfiguration of communication networks .::i";*‘
:-_:-_: typically do so by allowing processes to create new processes and/or allowing :: ::;q
3

o

N

@

e

a8

MR RRL ORI R St B e A/ S ok S Al e b A S A A L A Al i i Rl A P st and S g i
. - - « ™ = - - - - . - e - - - - " - L A - ~ - . PR - -

"_ Appendix C PRONET Page 45
::
:;: processes to pass the names of processes (or ports) to other processes ::;iif
}2 ([Kahn77], [Feld79], [Lisk79]1, [Hewi79]). Because the activities that control f;ji;j
1; dynamic reconfiguration of the communication network are intermixed with the jﬁLT;;
- activities of individual processes, they are not readily available for f;fjfﬁ
i; examination by an operating system or a person attempting to understand the fﬁf?ii
: program. e
~ Other programming languages/systems that support a similar separation
{t (UNIX [Bour78], Mesa [Mitc79], Task Forces [Jone79] and PCL [Less79]) do not
;i; enforce a complete separation. In each of these languages/systems a process
"fi may specify the creation of new processes in its description. Thus, while an
‘\ abstract view of the communication environment is available, neither the
;ff operating system nor a person reasoning about the program may rely on the com-
'?' pleteness of this view. In PRONET, the conditions and activities associated
with any structural modification of the communication environment (including
B process creation) must be stated in a network specification.
2 C.2 THE BASIC FEATURES OF PRONET
v’f PRONET is composed of two complementary sublanguages: a network
t specification language, NETSLA, and a process description language, ALSTEN.
;& Programs written in PRONET are composed of network specifications and process
E{ descriptions. Network specifications initiate process executions and oversee
‘Qﬂ the operations of the processes they have initiated. The overseeing capacity
2; of network specifications is limited to the maintenance of a communication
:f: environment for a collection of related processes. The processes initiated by
tiﬁ a network specification can be simple processes, in which case the activities
o of the processes are described by ALSTEN programs, or they can be "composite
;“ processes™, in which case their activities are described by a "lower-level"™
:ﬁ network specification.
E; ALSTEN is an extension of Pascal which enables programmers to describe ;;;;ﬁg
s the activities of sequential processes. During their execution, processes may | R
:{: perform operations that cause events to be announced in their overseeing ;
\f" network specification. Network specifications, written in NETSLA, describe L_:'
E&E the activities that are performed when an executing process 'announces' an f{f?i
i;; event, This chapter describes the mechanisms that enable processes to ;E:E;E
o announce events and the network-level activities that can be performed in han- AN
'?E dling an announced event. Two principles have influenced the design of these :;_'
o
\ 4

Page U6 PRONET Appendix C

features: independence of process descriptions and distributed execution of
network specifications.

C.2.1 Ihe Featuras of ALSTEN

Pascal was chosen as a basis for process descriptions because of its
simplicity, its strong type checking and the availability of an extendable
compiler. ALSTEN is, for the most part, an extension of Pascal with the
exception of the 'file' interface provided by Pascal. Process descriptions
written in ALSTEN communicate with their surrounding environment primarily
through locally declared ports which are visible to their overseeing network
specification. Hence, the Pascal 'file' interface has been replaced by port
declarations and message transmission operations in ALSTEN.

This section describes the ALSTEN features associated with measages
transmission and process-defined events. Each message transmission initiated
by a process causes an event to be announced in the network specification
which oversees the operations of the process. In handling this event, the
overseeing network specification determines where the message 1s to be
delivered and how the communication environment being maintained is to be
altered as a result of transmitting the message. While this provides a power-
ful mechanism for dynamic reconfiguration of logical communication networks
and maintains a high degree of independence in process descriptions, a more
flexible mechanism of transmitting information from an executing process to
its overseeing network specification is often useful. In ALSTEN, this
mechanism is provided by event declarations and an 'announce' operation.

Ce2.1.1 Message Transmission Operationa

Message transmission is the primary mechanism by which executing proces-
ses communicate with their other objects in their environment (their over-
seeing network specification and processes). The basic message transmission
operations of ALSTEN are 'send' and 'receive'. Both operations are specified
"in-line", as are the 'read' and 'write' operations of Pascal (and in contrast
to the 'interrupt handling' receive of Mininet [Live80]).

The send operation of ALSTEN is best classified as a 'buffering' opera-
tion with partial 'blocking'. When a process executes a send operation, its
(logical) execution is blocked until all events caused by the message trans-
mission are handled. Handling a message transmisson event may involve an
alteration of the logical network which oversees the execution of the process

--- o ..' ..' .-' q_' EERIRTRL SO L N S Sl | -
AR I N s IR
TSR RIS 'A".J'JA\.A:" LPLPRTS

Valy sl

Pl A AL A

f#
B

&

J‘
VPP

. '

ay %y .t
By N

OO NI
Y %

»
L

-t &
Ly

!‘l.‘.l .,
R

o 1%

R

P
"
T o)

....
AR RS
V)

f’ 2 "' ;. ; ;v »
FANSANINIRS,

»
-
. ®

e o o T 2 T D A T AN A Y % a N N N e e
SRIASASRAT NN ,\1\:{s:,x‘_'_\’\"-s'{-.j::}:»‘:\ LS LSR \"':"::': S

..........

Appendix C PRONET Page 47

sending the message and delivery of the message to any number of 'receiving'
processes. Message ‘'delivery' does not require that the 'receiving' process
perform a receive operation, but does block execution of the sending process
until the message value has been copied into the 'IPC 3space' of the
'receiving' process. The address space of all ALSTEN processes is partitioned
into an 'IPC space' and a 'manipulation space'. The 'IPC space' consists of
queues of messages which have been delivered to the process but have not been
'received'. The 'manipulation space' of a process contains the values of
variables which are local to the process,

To recelve a message, a process must wait until an acceptable message 1is
available 1in its 'IPC space'. When it has been completed, the receive opera-
tion of ALSTEN has the effect of transferring the message received from the

'IPC space' of the receiving process to its 'manipulation space!’,

Executions of the send and receive operations of ALSTEN are specified by
send and receive statements. The syntax of these statements is shown in
Figure 1. These statements are introduced into the grammar of Pascal [JensTi]
as new variations of the 'simple statement'.

<send stmt> ::=

Send [<expr>] to <bound port denoter>
<{receive stmt> ::= <simple received | <conditional receive)
<{simple receive) ::=

receive [<variable>] from <free port denoter>
{conditional receive)> ::=

shen {<receive part>} [<otherwise part>] end

<receive part> ::= <simple receive> [do <stmt>]
<otherwise part> ::= otherwise <stmt)>

Figure 1, Send and Receive Statements in ALSTEN

The 'send stmt' causes the value of the expression to be transmitted
through the output port identified by the 'bound port denoter'. The 'simple
receive' causes the 'variable' to be assigned the value of the next message to
be received from the port identified by the 'free port denoter'. If any of
the simple receives in a 'conditional receive' can succeed immediately, one is
chosen arbitrarily and the statement following the corresponding do is
executed. Otherwise, when there is no 'otherwise part', the execution of the
process is blocked until one of the receive statements can succeed. If none
of the receive statements succeed immediately and there is an ‘'otherwise
part', the statement following the otharwise is executed. This control struc-
ture presents a restricted form of the Ada melect [DoD80].

DAL TS)
B
\-‘.\\l»
<, °,

. N T T N
‘ .f) \% l'.l A 51 \ f X o

'''''''''

AN N R T R

« . '_-:..

Nl o} WA TN S

LA

3R 07 I

.
LN
M) A

P d
A 4, 4,
a a

u‘- .: l.. ‘: NG
. Sl
A A,

* . .1:'1"" ;:.u".n
' %

l. AA‘ 4
LA

A2
(\\-‘c“

£2

-, &
bt

R

[SRS

*
LAY

’ .
Pd

4

Pt

Page 48 PRONET Appendix C

C.2.1.2 Ports for Message Transmission

To emphasize independence of process descriptions, message transmission
operations are issued to locally declared 'ports'. The ports of a process
description are visible to network specifications that create instances of
processes which execute the process description. Simple ports are declared
with a direction ('in' or 'out') and an assoclated message type. The
associated message type defines how messages transmitted through a port are to
be interpreted. A message type can be a 'signal' (only control information is
transmitted) or any data type which does not contain pointer or file com-
ponents.

The notion of ‘'server' processes has had a significant impact on the
design of the message transmission features of PRONET. Server processes are
characterized by two properties: first, a server process must respond to
requests from an unknown number of 'user! processes and, second, it must
ensure that each response is directed toward the process that generated the
corresponding request. When using server processes and user processes in
different programs, it may be necessary to impose 'intermediary' processes on
one or more of the communication paths between a server and a user. An
intermediary may mediate between differing message formats or communication
protocols.

The ALSTEN features related to the description of server processes are
'port groups', 'port sets' and 'port tags'. Port groups provide a means.for
collecting a number of simple ports into a single bundle. A ‘'bidirectional
port' would be a port group containing two simple ports, one input and one
output, each with an associated message type. Port sets, on the other hand,
are used to denote collections of identical ports-——either simple ports or port
groups. Port sets provide server processes with a mechanism for communicating
with an unknown number of user processes. Each element in a port set is
assumed to be associated with a unique user--if the port set is a collection
of port groups, the simple ports in each port group may be connected directly
to the user or to intermediaries. In order that a server may prestrict its
comnunications to a particular user, we introduce port tag variables. Port
tag variables are declared to range over the members of a single port set.
The value of a port tag variable can be set in a receive statement and may be
used in subsequent send and receive statements.

A STATRENTRTRTIR TR TR TR SRR TR R S AN A A M S N FTETETITRIET
" :
»z Appendix C PRONET Page 49 -8
& =
-;:_ The syntax for declaring ports and port tag variables in ALSTEN 1is shown .:: ':::.Z_:
o in Figure 2. Port declarations appear in the header of a process description AN
(; and hence, the definition of any 'msg type' must appear outside of the process i@
"y RERTRA
f-:; description (unless it is a standard type; e.g., integer, real, signal, etc.). "j
:;3 This is necessary as these definitions must be shared by other processes (that ;:-;;:-EE]
j:x'_' either send or receive messages of type 'msg type') and any network specifica- .:-j:}‘_'::-:}
tion that oversees the operations of processes executing the process descrip- 0.;
tion. The nonterminal <port tag type> is introduced as a new 'type' in the ;
< syntax presented in [JensT4]. 2
<port decl> ::= <simple port decl> | <port group decl>
\ <simple port decl)> ::=
05 bort [set] <port id> <direction> <msg type>
N <port id> ::= <id>
"::] <direction> ::= 4in | out
o {msg type> ::= <type id>
A <{port group decl)> ::=
\ 4 port [set] <port id> '(' <subport list> *')°
. <subport 1list> ::= <subport decl> {';' <subport decld}
*_q <{subport decl> ::= <subport id> <{direction> <msg type>
J‘:. <subport id> ::= <id>
.:‘ <port tag type> ::= fag of <port id>
(Figure 2, Port and Port Tag Declarations in ALSTEN
)
X ;.: Figure 3 presents the ALSTEN syntax for denoting port instances in send
"ﬁ: and receive (and announce) operations. A 'bound port denoter' whose 'simple
'f::f port denoter' identifies a ‘'port set' must contain a ‘'use tag part' to
| identify the specific instance of the port set being denoted. Recalling the
F (]
$\ syntax of the send operation presented in Figure 1, the message type of the
A port denoted in a send operation must be "name equivalence™ compatible with
J'- the type of the expression being transmitted (if the message type is 'signal?
‘ no expression can be present). A similar restriction holds for receive
I:::'. operations.
-:s‘Q
{:- <bound port denoter> ::= <simple port denoter>
:.:_: ! <simple port denoter> <use tag part)
- <simple port denoter> ::= <port 1id>
o | <port 1d> '.' <subport id>
i <use tag part> ::= uyse <port tag variable>
\,. <{port tag variable> ::= <variable>
:\:"_- {free port denoter> ::= <bound port denoter>
o | <simple port denoter> <set tag part>
h @i <set tag part> ::= aet <port tag variable)
¥ \é Figure 3. Denoting Ports in ALSTEN
\'),
o
\l
"\
:.~.‘~_-.-‘-.'.-.-. s e 8 e pRAR T T e " e e . B AT W e T e Y™ 8 LI TV R W W \ - Te A gt
EACSES AN RN :.‘Z-.'l-.-f.-..j.j-'.:-f.:':j?':}Z.::'.:-'.'-Z{:}j-..::.:::.r:j.-::.::'_-:fj:::::::-_;'.:3}:'_::::::::{:::1:::jt-:{::t:{b:ft_’%_’%_:f:_ j'.::_';_\f:_‘f:x_ AN
; S R A R N N R A

L .,l " s’ 2% .. X ”
R (Y%) -
EA f‘ [Lf*l“.flf._

5 &

’

U

‘l
ol

“

o~ ’ B o e
...III'!'

« ;. ..I 'l
.

o

7

7

EFA

S

YN
XXX
»

R

o .

A, e
e 2o s S0

..\‘

~ AP
Ny 5"-‘-‘.
?\‘.\&\

1

Page 50 PRONET Appendix C

The use of port sets, port groups and port tag variables is illustrated
in Figure 4 which presents the description of a simple server process, This
process implements a shared sequence of numbers. In line 2 a port set,
tuser!, is declared. The elements of this port set are instances of a port
group containing an input port 'req' and an output port 'rsp'. Lines 10 and
11 illustrate the setting and subsequent use of the port tag variable
'user_tag' (declared on line 4). In line 10, the value of 'user_tag' is set
to indicate which instance of the port set 'user' the request 1is
received from. The value of ‘'user_tag' 1is ysed in line 11 to direct the

response to the element in the set 'user' from which the request was received.

1 process script shared_sequence

2 port set user (req in signal; rsp out integer);
3 ar

y user_tag : tag of user;

5 sequence_val : integer;

6 begin

7 sequence_val := 0;

8 xhile true do

9 begin

10 receive from user.req set user_ tag;

11 S8end sequence_val to user.rsp use user_tag;
12 sequence_val := sequence_val + 1

13 end (® while ¥)

14 end (* shared sequence #)
Figure A. A Simple Server Process

C.2.1.3 Process-Defined Events

As has been discussed, the execution of a send operation causes a mes-
sage transmission event to be announced in the network specification which
oversees the operation of the process which executes the send operation.
Thus, the transmission of a message may lead to a reconfiguration of the com-
munication environment used by the sending process. This 1is particularly
useful in providing a mechanism for dynamic reconfiguration of logical com-
munication networks while maintaining a high degree of independence in process
descriptions. However, a more flexible interface between processes and their
overseeing network specifications which allows processes to indicate
significant changes in their state or possible errors in communications is
often useful. In ALSTEN, this interface is provided by event declarations and
the announce statement,

Process descriptions may declare event names and subsequently 'announce!

“ " a

~ P R T S
P

-

DR
A!_f}!:\':‘ ﬂ? SO

> W
¥ T e e

...............

Appendix C PRONET Page 51

these events during their execution. The activities to be performed (if any)
when an executing process announces an event are described in the network

specification which oversees the execution of the process. Hence, this
Yo mechanism provides a flexible interface between the process-level and the
\.}-'..:" network=level while maintaining the separation of these levels.

s

X Event declarations have the form:

<event decl)> ::=

N avent <event name> [about <port id>]

IO

': Event declarations appear in the header of a process description and follow

the port declarations of the process description. The event name is an
identifier which can be used in subsequent announce operations. The optional
'about part' allows the process to associate an event with a set of ports,

-

L,

..'
[

.
Ajz
PSS LR,

' ": This is useful in indicating erroneous communication (either protocol or
— consistency) on a specific port.

R

o The announce operation of ALSTEN is introduced as a statement (a 'simple
é: statement! in the grammar of Pascal [JensT4]):

2o

<announce stmt> ::= announce <event name>
[about <bound port denoter>]

‘Cn The 'event name' must be the name of a declared event. Further, if this event
f":': has been declared with an associated port set, the ahout clause must be
N present and must denote an instance of the associated port set.

::’_ An example of process~defined events is presented in Figures 5 and 6.
:": Figure 6 presents the script for instances of 'mailbox' processes. The types
o

::'_.,'.‘: used in the mailbox process script are shown in Figure 5. In this case, the
A event 'mailbox_empty'--declared in line 5 of Figure 6 and announced in 1line
:-;l 24--18 used to indicate a significant change in the internal state of the
oo

A process.

X

. 1

— 2 letter = array [1..120] of char;

YO 3 user_rsp_kinds = (empty, mail item);

2 4 user_rsp = regord

o 5 case kind : user_prsp_kinds of

5 6 empty : ();

M 7T mail item : (let : letter)

‘ 8 end; (® user_rsp ®)

Figure 5. Mailbox Process Saoript Type Definitions

)
Y
A)
"‘*"'-"‘-'a"""-"'a- R, N e ¥ RS " Kt
QG CA IR LLLTLN L04 RGO Lo e CR T o G R S N N R At SL R L PR RO E G LR R RA TP
J.*\f.‘n .‘-'.'ﬂ'.:'f. iy > ., .-_':-\':\":-_ ., ﬂ.':j*\'_‘. os ‘-":'-':\' o ..~..-:‘.n'_.-:.‘-:\~-. v:\-’- SRR R \J'__- e
- ")y -

. e A
I SEREH LOIN CIEREY o) SO CN ULt LA

.....

Y, W
. (1 JPt Bl o

e Vo Ya v r4 O i 3 e T T T T T N e T < Lo Dl TS el Ll NSRRGSR O
\.":' . :'-" h
L)
Y -
‘ Page 52 PRONET Appendix C
X

s 1 process script mailbox
‘-:-.: 2 port input in letter;
P 3 bort output out letter;
b y port control in signal;
‘o 5 event mailbox_empty;

¥ 6 yar

:: T next_rsp : user_rsp;
N 8 done : boolean;
:'::.r 9 begin

10 repeat

. n receijve from control;
L7 12 next_rsp.kind := mail item;
o0 13 done := false;
oo 14 repeat
e, 15 xhen
VA 16 receive next_ rsp.let Lrom input do
. 17 Send next rsp to output;
g 18 otherwise
= 19 done := true
A% 20 end (® when @)

N 21 until done

22 next_rsp.kind := empty

o 23 Aaend next_rsp Lo output;

s 24 anpounce mailbox_empty

N 25 unti] false
:;. 26 end (® mailbox script #)

e Figure 6. The Mailbox Process Soript
::;: This process script implements a simple mailbox which acts as a
\\ repository for ‘'letters'. Responses from the mailbox will be of type
2‘§ 'user_rsp' which is defined in lines 3-8 of Figure 5. Upon reception of a
W signal on its 'control' port (line 11 of Figure 6), the mailbox forwards the
R letters on its 'input’ port to its *output'! port (lines 16 and 17). When there
:; are no letters remaining on the mailbox input port, the process sends an
.‘-" 'empty' message to its output port and announces the event 'mailbox empty'
Py

- (1ines 22-24). The process then cycles to wait for the next request to
j deliver its 'contents' (line 11).
Y
:3 The structure of this mailbox is natural considering the semantics of
-‘: 5 the ALSTEN send operation. Because senders do not wait until their messages
‘lL
o are received, there is no need for the mailbox to receive messages as they are
jsj sent. Hence, the mailbox does not maintain an internal representation of its

L)

""3 contents but rather, relies on the run-time support environment to maintain
:j 4 collections of letters. A simple mail system that uses this mailbox process
— socript and illustrates the handling of process-defined events will be

presented in the next section.

0N

"9
4]

1 TP RS T

NSRS A e s Y2 A SON .

i f..c",_-:q}:;q, BHEOAS 's}. R0 A
\."(.‘l.' MRS .-.”. g

"y \~ &S 4%,) AN Q‘\lv_". By

)

o

v At % A & AL

.......
.........................

Appendix C PRONET Page 53

C.2.2 The Features of REISLA

The features of NETSLA are aimed at specifying the initial configuration
and subsequent modifications of a communication environment. The overriding
principle followed in the design of these features is that of "centralized
expression--decentralized execution" [Live80]. Centralized expression 1is
important 1in presenting the abstraction to be supported by network
specifications. A1l of the inter-process relationships that describe a com-
nunication environment appear in a single network specification. However,
this communication environment is not maintained in a centralized fashion.
Processes maintain their communication environment indirectly. When they
execute send or announce operations, processes perform the activities
specified by their overseeing network specifications; however, the nature of
these activities are unknown to the process.

C.2.2.1 An Overview of Network Specifications

The syntax for specifying a network is shown in Figure 7. Like the
header of an ALSTEN process script, a network header can contain port and
event declarations. Network specifications that do declare ports and/or
events will be used as "composite processes" in higher-level network
specifications,

<network specification> ::= <network header>
{<process class specification)}
{<event handling clause)}
[<initialization clause>]
and <identifier>
<network header> ::= network <met id> ';'
{<port decl>} {<event decl>}
<{process class specification)> ::=
process class <process id>
[<process attributes>]
{<port decld}
{<event decl)}
end <process id>
<process attributes> ::= attributes
<{field 1list)> end attributes

Figure 7. Network Specifications in NETSLA

The process olass specifications contained in a network specification
capture those portions of a process description that are visible in a network
specification--its name, port declarations and event declarations--and a
'process attributes' part. The name, port declarations and event declarations
stated in process class specification are a reiteration of the process script

e

s

Bele

2

5.
g
LA

(O Iy
. l-."""{
L]

.........

PRONET

Appendix C

or network specification header which is used to implement instances of the

process class. Process attributes are used to identify the characteristics iﬁl s
associated with instances (processes) in a process class. The implementation

of a process class may be a network specification (in which case instances of ;irf-

the process class are actually "composite processes") or a process script ;?. .7
written in ALSTEN. In either case, this implementation is not contained in o .
the network specification., Process implementations are compiled separately
and compatibility between specification and implementation is checked 1in a
pre-linkage phase. The remaining portions of a network specification, the

event handling clauses and the optional initialization clause, describe the R
instantiation and subsequent modifications of the logical communication f;fff
network which is maintained by the network specification.

When a logical network is instantiated, its initialization clause is
elaborated. This 1initialization clause is used to create a collection of
processes and delineate communication paths between them. A simple network
specification is 1llustrated in Figure 8. One process class, 'proc_class'
(1ines 2-5), is used in this network specification. Instantiation of the
logical communication network is specified in lines 6~14 and involves the
creation of three processes (lines T-9) and the establishment of communication
paths betw.en them (lines 10-13). The statement ‘'gonnect procl.output to
proc3.input' (line 10) specifies that the messages sent to the output port of
'proci' are to be transmitted to the inmput port of ‘'proe3!'. A graphical
representation of the logical communication network established by this
network specification is shown in Figure 9.

1 network static_net

2 Rrocess class proc_class

3 Dort input in integer;

y port output gut integer;

5 end proc_class -

6 dnitial R

7 greate proc! : proci_class; e

8 oreate proc2 : proci_class; T

9 greate proc3 : proci_class; i

10 gonneat procl.output fo proc3.input; DRSS

11 gonnect proc2.output to proc3.input; O

12 gonnect proc3.output to proci.input; T

13 gonneat proc3.output to proc2.input; NG

14 end static_net NRSAN

Figure 8. A Simple Network Speoification e
£l
MRNILSAS
PN
o

AN, |
. W

o
e a Ve Ve

VARKS L

2,

»

v, A2 4 Al
) ';'."'s: :”'"' AXA
" RO

\‘\,\
LS L AL Y

LA

»”™ .

:“, b
2

hY ..‘\ ,‘V’N‘;‘u

»
.

»
IENERE W RS

4 3
[]

e 4
"‘.
8

]
E N AN

.......
.............................

Appendix C PRONET Page 55
/ \ / \
! proet | | proec2 |
-/ - -/
input | | | output input | | | output
4 |
! | I
\/ | !
(. | |
output_|__| |_input
/ \
! proe3 |
N/
Figure 9. Graphical Representation of the Simple Network

This simple example illustrates two of the simple activities that can be
performed in a network specification, creation and connection. As

illustrated, creation

involves the binding of a name to each process instance

as it is created. In NETSLA these and other name bindings are limited to the
clause in which they appear. Hence, the names 'proci'!, 'proc2' and 'proc3’'

may be used throughout
other clauses unless

the initialization clause but would not be usable in
they were explicitly bound to objects (process or port

instances) in these clauses, Connection is shown in lines 10-13. One-to-one,

many-to-one (messages are ordered by time of arrival) and one-to-many (mes-

sages are replicated)
nected, ports must be
type compatibility,
equivalence of types.
components:
1) If one port is a
the other 1is a

connections between ports can be specified. To be con-
compatible in both message type and direction. Message
like type compatibility in PASCAL, is based on named
The definition of port direction compatibility has two

network-level port (declared in the network header) and
process-level port (declared in a process class

specification), the ports must have similar directions.

i1) If both ports

are process-level ports or both are network-level ports,

the ports must have opposite directions.

C.2.2.2 Event Handling
The initializati
networks., However, ot

on clause is sufficient for the description of static
her features are needed to describe dynamically changing

communication environments. In PRONET, these features are based on the notion

of network events.
which announce events

During their execution, processes may perform operations
to their overseeing network specification (using gend or

announce). NETSLA provides two mechanisms for handling announced events in

b S
"\:‘\ --'_g“ ..‘
" Page 56 PRONET Appendix C —
N e
AN network specifications: connections and 'event handling clauses'. el
e Connections are one mechanism for handling the event associated with S
U message transmission on a port. When a connection between two ports has been .
:’._, established, this 'message transmission' event is handled by transferring the .’-_f
:::Z::: message from the sending port to the receiving port. The connection mechanism o
::ij:: is distinct from the event clause mechanism in three ways: connections can be PR
) established or broken dynamically, the activities of this mechanism are e
‘.E:: defined by the language and connections can only be used to handle the 'mes- :‘.:'-" -
O sage transmission' event. R
E’ "‘: ..:-: -.
- Event handling clauses are more flexible in the types of events they can .
*) handle and the activities they can specify but are established statically and o
‘i:? cannot be 'broken'. Event handling clauses provide a capability to specify :
:C':: the activities that are to be performed when a message is transmitted (if a R
(R A} B
(s simple connection is not sufficient), when a process defined event is E‘El
A‘:}‘ announced, when an element of a network declared port set is created or when ;;-j.f-}
A:;::f an element of a network declared port set is removed. The syntax of the event e
" -
2ty handling clauses of NETSLA is illustrated in Figure 10. PR
o Sl
b <event handling clause) ::= <arrive clause) P—
| <enter clause> | <leave clause> | <when clause> LT
"o <arrive clause> ::= <arrive clause header)> e
DN <activity list)> end arrive L
o <arrive clause header> ::= aprrive [<i1d>] an A
":j.: <arrive port binding> [from <processs binding>] e
, <arrive port binding> ::= [<subport id> of] <port binding> —r
s <process binding> ::= [<id> ':'] <process class named> “'\
<port binding> ::= [<id> ':'] <port set name> e
-:,:' - <enter clause> ::= <enter clause header> Ay
Al {activity list> end enter :_::_:: i
N <enter clause header> ::= epnter <port binding> do A
» <{leave clause> ::= <leave clause header> ke O
= <activity list> end leave A
= {leave clause header> ::= Jeave <port binding> do _;,-j:.:}
<when clause> ::= <when clause header> RIS
B4 - .
v <activity list> end when L
Col <when clause header)> ::= yhen <event name)>
LA announced by <process binding> do -
<7 <initialization clause> ::= 4initial <activity list> }"-"
\‘ Figure 10. NETSLA Event Handling and Initialization Clauses ;’.':-j.\.
i 353
| ;-Z; The bindings in the various event clause headers are used to bind names e
"';, to the objects (message, process instance or port instance) involved in the C e
.-:.f: event being handled. For example, xhen clauses are used to handle the
(S
o
hh
30
@
e e e e e e e e e e e sttt
N N N A L s e T T SN L e AN N N
NN AN T A N NI TN NN I
[M PP PR PR 2% PO DT PGty

Appendix C

announcement of process-defined events. As such, the following 'when clause

header®' could be used in a network specification to handle the 'mailbox_empty’

event when this event is announced by a process executing the mailbox process

script shown in Figure 6.

) ¥hen mailbox empty announced by box : mailbox do

In this case, the event being handled is the process-defined event

'mailbox_empty! and the name 'box' is bound to the instance of the mailbox

process that announced the event. When clauses are also used to handle the

standard event 'done'. Whenever an executing process terminates its

activities, the standard event 'done' is announced to its overseeing network

specification.

e
K]
S ts

.‘ .&

Arrive clauses are used to handle message transfer events when simple .::'xf

connections between ports are not sufficient. An arrive clause can be NN
associlated with the arrival of a message on a network-level 'in' port, in

:

v ol
. | .

B 30
i

. s
4 «

5

which case the optional 'from process binding' is not specified. An ‘'arrive EEQESE;
clause' can also be associated with the arrival of a message on an 'out' port Ei:itgé
of a process instance, in which case the 'from process binding' identifies the ;Eiéggé
process class of interest and can be used to bind a name to the instance which el

is transmitting the message. The first didentifier in an 'arrive clause
header' is used to bind a name to the message value being transmitted. The
‘arrive port binding' in an 'arrive clause header' identifies the port set,
binds a name to the port group instance through which the message is transmit-
ted and identifies the subport being used.

When an event is announced, two possibilities exist: no 'handlers!
(connections or event handling clauses) are associated with the event or at

' least one ‘'handler' is associated with the event. In the latter situation, : 7
; the activities specified by each handler are performed on the event (in an . ::&
’ arbitrary order)., For example, when multiple connections are established for ?hét%sg
a port, any message transmitted through the port is replicated and delivered zf{;;;;

along each of its connections. When no handlers are associated with an event, I

its announcement has no effect on the communication environment being EE{S{S;E
maintained by the network specification. Moreover, the objeot (process or QE_:§:
overseeing network specification) that announced the event cannot determine if 5;525%%

the event was handled. For example, when a process sends a message to a port :;::::f

that has no established connection or arrive clause, the message is removed ?ﬁ;ⅈ

N

S

......... '\‘x"::1

NN LT e e L D IRy

....................

Page 58 PRONET Appendix C

__‘.
.P:“ from the port and the sending process cannot determine that its message has
f{d‘: not been delivered.

o

(. C.2.2.3 Simple Activities

;&:3 <activity 1ist> ::= <activity> {';' <activity>}

,;:g activity> ::= <simple activity> | <structured activity>

::«.{» <simple activity> ::= <creation> | <termination>

"-j | <removal)> | <connection> | <disconnection>

| <message transmission> | <value construction)
| <event announcement> | <attribute assignment)

-‘a.::: <creation> ::= greate <process binding>
AN | create <port binding> on <process instance>

}a{}; <termination)> ::= terminate | terminate <process instance>

e i <removal> ::= [remove <process instance>
M 1

i remove <port group instance>

. _ <connection> ::= gconnect <port instance> Lo <port instance>

* <disconnection> ::=z discopnect <{port instance>

X | disconnect <port instance> from <port instance>

i{ <message transmissiond ::=

-:.:- Send <msg value> to <{port instance)>

<value construction)> ::= gonstruct <id> *:!' <{type name)>

'[* <component assignment list> ']’

YN <attribute assignment> ::= <attribute denoter> ':=' <value>

:f}.f <event announcement> ::= announce <even: name>

e [about <port group instance>]

. Figure 11. Simple Activities in NETSLA
{

" NETSLA provides nine basic activities which can be used in initializa-

Y

::'.; tion and event handling clauses: creation, termination, removal, connection, R
;,E:; disconnection, message transmission, attribute assignment, event announcement O

. AN Y

- and value construction. The syntax used in specifying these activities in .'.‘.,f:‘.d
5 NETSLA is shown in Figure 11, ‘\}?i
-.- V o .’
o IS
:‘:-:.“ The creation activity can be applied to a process class or a port set of :r::.:,.::
AN a process instance. In the first of these variations, a new instance of the - '

process class executing the process script or network specification associated
with the process class 1s instantiated. The ‘process binding' part of the

"

AR A

:" creation activity is used to identify the process class and bind a name to the
._"Q newly created instance. This form of the creation activity was illustrated in
the network specification illustrated in Figure 8. The second variation of
-S this activity creates a new port group instance in a port set on a process
;-: instance. The 'port binding' part of this variation is used to identify the
:\:;_. port set and bind a name to the newly created port group instance. For exam-
" ple, a network specification containing the process class specification:
oy

e ACEA A A S A A A e i A A Y RN NS RS
o R
SN *

. Appendix C PRONET Page 59 v ol
“-“, ‘.:.‘.:_'-‘
R
D process class shared_sequence .
jg% port set user (req in signal; rsp out integer);

end shared_sequence
could contain the activities:

create server : shared_sequence;

greate user port1 : user on server;
(Recall the 'shared_sequence' script of Figure U4.) The latter of these
activities creates an element of the port set 'user' on the process instance
identified by 'server'. This newly created element is bound to the name
'user_port1'.

The termination activity can be applied to a process instance or to the
entire logical network being maintained by a network specification. When this
activity is applied to a process instance, the activities of the process are
terminated and no further messages or events will be transmitted to or
received from the terminated process. When no process instance 1s specified
in a termination activity, the 1logical network maintained by the network
specification is terminated. This involves the termination of all process
instances executing in the logical network.

The removal activity of NETSLA can be applied to a process instance or
to a port group instance on a process instance. In the latter variation, no
future messages will be transmitted through the port instance which has been
removed. Attempts to transmit messages through a removed port will have no
effect. When the removal activity is applied to a process instance, the
process which has been removed may continue to execute and may generate future
messages; however, no future messages will be transmitted to the identified
process. (In effect, all 'in' ports on the process instance are removed.)
This somewhat unusual definition of ‘'removal' derives from two considerations:
process execution and the ALSTEN send operation. Because messages are
buffered using the ALSTEN send operation, processes may have meaningful work
to complete before their activity is terminated. Further, processes have an
inherent termination built into their descriptions.

The connection activity involves two port instances and once performed
ensures that all messages transmitted through the first port instance will be
transmitted through the second until this connection is broken by a subsequent
disconnection activity. This activity was illustrated in the simple network

DN NNGD

o
2t A

A LAY

2270 A

00

) A ' a

(S

u!.'

-

.

S oS,

Ly

Lo

‘.

LNES

YOI

w ._, .
EARFEATTA Pt

Page 60 PRONET Appendix C

specification shown in Figure 8.

The disconnection activity applies to ports and has two variations, In
the first, two (presumably connected) port instances are identified. This
variation breaks a previously established connection between the identified
ports. In the second variation, only one port instance is identified. This
variation breaks all previously established connections involving the
identified port. Once a connection between two port instances has been
broken, future messages transmitted through the first port will no longer see
the connection and hence, will not automatically be transmitted through the
second port.

Message transmission involves the transmission of a message value

through a port instance and has the same semantics as the send operation of
ALSTEN.

NETSLA does not provide general variable declaration or assignment
mechanisms as does Pascal (and ALSTEN). Instead, NETSLA is based on a dynamic
binding of identifiers to values in event clause headers, creation activities
or structured activities (discussed in the next section). For example, the
value of the message being transmitted can be bound to an identifier in an
'arrive clause header'. While this is sufficient for most purposes,
occasionally there arises a need to construct values of (Pascal) structured
types. The value construction activity of NETSLA has been introduced to fill
this need. Value construction involves the assignment of values to the com-
ponents of a structured type (the type of the value being constructed is given
by 'type name') and the binding of an identifier to the value constructed.
The 1identifier can then be used in later activities to refer to the value
constructed.

Periodically, the attributes of a process instance will need to be up-
dated to peflect changes in the characteristics of the process instance. The
attribute assignment activity 1s provided to enable the updating of the
attributes of a process instance. An attribute of a process instance is
denoted by a conjunction of a 'process instance' and an attribute name., The
type 'value' assigned to an attribute of a process instance must be compatible
with the type of the attribute.

Like process descriptions, network specifications that act as "composite
processes”™ may need to announce events to their overseeing network specifica-

0 VA P S R .t
o T W
-t - " -

RSN

, .
) -
e e s

. ...'.;b . 7

Appendix C PRONET Page 61 .

tion while they are active, This capability is provided by the event

N2 announcement activity.)
(’ C.2.2.4 Structured Activities :,'.
3§? NETSLA provides structured activities for alternation, iteration and ﬁi"f
:3 location. The syntax for the alternation activity is presented in Figure 12, %:"

¥y This activity is derived from the case statement of Pascal and provides a ? .
" mechanism for specifying alternative lists of activities to be performed on
f;: the basis of an available value.
) ._’1
{:3 <structured activity> ::= <alternation> | <iteration>

' | <location>
R <alternation> ::= gase <value> of
NN {<case 1ist element>} [<otherwise part>] end gase

j« {case list element> ::=

\ <case label 1list> ':' '(' <activity list)> ')'
\Eﬁ <otherwise part> ::= otherwige <activity list>

~
‘LJ Figure 12. Alternation in NETSLA

4
/ ;' The syntax of the location and iteration activities i1s presented in

:ﬂj Figure 13. These activities provide a mechanism for selecting process and
f,k port instances in the logical network maintained by a network specification.
‘o Both activities are based on a 'selection binding' which specifies the
* : criteria to be used in selecting groups of object (port and process)
el instances. The 'selection binding' is also used to bind names to the objécts
oo selected.

The iteration activity is a looping construect. The activity list
specified in the 1iteration activity is performed for each group of objects
that meet the criteria of the 'selection binding'. In each iteration of the
activity 1list, a new group of object instances is selected and bound to the

) YA

names specified in the 'selection binding'. The location activity is a simple

1:5: conditional construct. The activity list specified in the location activity
Eﬁ will be performed at most one time for one group of objects that meet the
o criteria of the 'selection binding'. In the case of location, if multiple

f:: groups of object instances meet the criteria, one of these groups is selected
Ef; arbitrarily and the object instances in this group are bound to the specified
:;j names. In the case of iteration, the activity list specified will be applied
A

to all groups, but the order of application is arbitrary. If no group of
object instances meets the criteria of the 'selection binding', in either
iteration or location, the activity list specified in the optional 'else part’

Y Ay
.'.'. "‘ ’a.’l: L“

Y

3 o oF
'I,:'.‘f"(.'.:\ X,
- 8

P R

i
RPN

.'

AA A SN

l- 'I.

xt Y

- }J~J.'

e

{.4 “ny - "
[@FANAN

LMY
Sk

Page 62 PRONET Appendix C

will be performed.

<iteration)> ::= <iteration header)> <activity list>
[<else part>] end range
{iteration header> ::= range <selection binding> do
<location> ::= <location header> <activity list)
[<else part>] end f£ind
<location header> ::= find <{selection binding> do
<else part> ::= else <activity listd>
<selection binding> ::= <simple selection binding>
! <nested selection binding>
<{simple selection binding> ::=
<port binding> [<where clause)>]
| {process binding> [<where clause>]
<nested selection binding> ::=<{port binding> on
<process binding> [<where clause>]
<where clause> ::= yhere <criteriad
<criteriad ::= <criteria factor>
| <eriteria> or <criteria factor>
{eriteria factor> ::= <criteria primary>
| <eriteria factor> and <criteria primary>
{criteria primary> ::= not <criteria primary>
| <connectivity criteria> | <attribute criteriad>
<connectivity criteria> ::= connected <port instance>
[to <port instance>]
<attribute criteriad> ::=
<attribute denoter> <rel op> <value>

Figure 13, Iteration and Location in NETSLA

The 'selection binding' can be a 'simple selection binding' or a 'nested
selection binding'. A 'simple selection binding' is used to select a single
object instance (one for each iteration in the case of the iteration
activity), while a 'nested selection binding' identifies a process instance
and a port instance on the identified process.

The port and process bindings in the simple and nested selection bin-
dings identify the process class and/or port set of interest. The optional
'where clause'. is used to impose additional selection criteria based on con-
nectivity or attribute values. -

Ce2.2.5 A Simple Mail System

This section presents the design of a simple mail system to illustrate
the basic features of NETSLA. The mail system provides services that allow
users to create numbered mail boxes, read the mail in a numbered mailbox and
send letters to a numbered mailbox. The type definitions needed in the design
of the simple mail system are presented in Figure 14.

e e L e
AN A AL AU A

-

* L) pJ 3

. oAy .
(P XIR I)

N he

oo
e

.

SAE A

e Appendix C PRONET Page 63 vuﬁgq
o

Qo O
A N ;‘-J:‘
'-\ h " _‘.d_“_q.'q
o5 1 type R
-,_aq 2 letter = array [1..120] of char; tend
Lat 3 user_req kinds = (make box, read mail, send _mail); S
(. 4 user_req = regord
[~ 4 S number : integer;
- A 6 case kind : user_req kinds of
wos) T make box, read mail : ();
b o 8 send_mail : (let : letter);
Lo 9 end;
- 10 user_rsp _kinds = (empty, mail item);
A n user_rsp = record
N . 12 case kind : user_rap kinds of
(N 13 empty : ();
NI 14 mail_item : (let : letter);
&> 15 end;
>y Figure 14, Simple Mail Systems Type Definitions
e ol .: 4
~ An external view of the mail system is illustrated in Figure 15 and is NS
ﬁﬁj characterized by a set of ports, each of which has a request subport, 'req', :;:{:;:j?.:
' TN
and response subport, 'rsp'. The internal organization of the mail system is =2
~}" hidden, only the ports defined by the mail system are visible. In particular, «‘:::)
NN
2':: users of the mail system are unable to discern whether the mail system is 'j
"o R
;\: organized as a simple process or as a network of communicating processes. ::E:-_.{ji
X's L
user user user @ {
wd rsp req rsp req rsp req I
'\; ~(47) (4av) etc. (4V)_
. ‘.\ f / \
W / \
'\ | !
oy ! |
B \ / NN
:i. ﬁ \ —/ -S::.t "
? .b‘ [y '-\::
é':" X Figure 15, Graphiocal Represenatation of the Simple Mail System -:‘::c
5 s
= :
= S
.\:\ 'l::-::-‘
~a o
A ¢ :a
LA i (it
k. il b
.’ - -“.\-"
7] L)
s s
-~
P , S
%
.. 3
n
N

Loa

LY
'&"\.‘ . \.;p.‘ LRI
S NI NI
- ‘a*.-::.ﬂ:f"‘:::-'. e
A N oy

N

PR v Sadalay : o T ey,

X Page 64 PRONET Appendix C
. ::'
) 1 network simple mail;
< 2 port set user
>} (req in user_req, rsp out user_rsp);
(3 Drogcess class mailbox
\ 4 attributes
I 5 number : integer
> 6 end attributes
i 7 port input in letter;
N 8 bort output out user_rsp
* 9 Rport control in signal;
-, 10 event mailbox_empty;
”} 11 end mailbox
§§ 12 arrive msg : user_req on req of u : user do
o 13 Ssase msg.kind of
' 14 make_box :
- 15 (£ind box : mailbox where
b~ box.number = msg.number do
Aoy 16 else
32- 17 greate new_box : mailbox;
N 18 new_box.number := msg.number
N 19 end find)
: 20 read _mail :
a'i 21 (£ind box : mailbox yhere
:; box.number = msg.number do
ifa 22 sconnect box.output to u.rsp;
v 23 Send to box.control
24 slse
3& 25 sonstrugt rsp : user_rsp [kind := emptyl;
! 26 8end rsp Lo u.rsp
[T 27 end f£ind)
5§ 28 send_mail :
o, 29 (f£ind box : mailbox yhere
' box.number = msg.number do
N 30 aend msg.let to box.input
Y 31 and find)
:- 32 end arrive
! 33 xhen mailbox_empty announced by
- box : mailbox do
. 34 disconpeat box.output
N 35 end uhen
o 36 end simple mail
;ﬁ Figure 16. Network Specifiocation for the Simple Mail Systea
ﬁ: A network specification which implements the simple mail system is shown
§ in Figure 16. To match the external specification illustrated in Figure 15,
s% this network defines a port set 'user' (line 2). The dynamic behavior of the
Y mail system is specified in the arrive (lines 12-32) and yhen (lines 33-36)

clauses. New mailboxes are created as requested when there are no mailboxes
with the specified number (lines 15-19). Reading the contents of a numbered

:

Appendix C PRONET Page 65

mailbox involves 1locating a mailbox instance with the correct !number!
attribute. If an acceptable mailbox instance is found, its output port is
connected to the 'rsp' subport of the user port that generated the request and
a signal is delivered to the 'control' port of the mailbox instance (lines 21-
33). This connection is broken when the mailbox instance announces the event
'mailbox_empty' (lines 33-35). If no mailbox instance can be found, an empty
response is constructed and transmitted to the response subport of the user
port that generated the request (lines 25 and 26).

C.2.2.6 Event Clz-ise Execution

To achieve decentralized execution of network specifications, the
activities specified in an event handling clause will be performed--
indirectly--by any process that announces the event handled by the clause.
For example, any process that sends a message to the simple mail system shown
in Figure 16 would perform the activities specified in the arrive clause
(lines 12-32) of the network specification.

The activities specified in an event handling clause are best viewed as
specifying searches and modifications of a partitioned and distributed
representation of a logical communication network. This representation
contains representations of all object (port and process) instances in the
logical network as well as representations of the current connections between
port instances in the 1logical network. Executions of all event handling
clauses are required to be serializable,

C.3 DISSCUSSION

The language features presented reflect a concentration on inter-process
relationships that describe program structure. Recall that our goals were to
provide features which would support independence of processes and the
description of process hierarchies, while obtaining information which would
aid in the effective execution of programs. The network specifications of
PRONET are, in general, more useful in support of the first goal than of the
second. As PRONET has developed and the features in NETSLA have come to
provide more power for describing dynamic reconfigurations, the network
specifications have come to provide less useful information to an NOS. For
programs which can be described by a static network, however, the features of
PRONET effectively support both goals.

-0
R
.

e
PR
.
._...
NS
T e
S

&
s
LY g

".' v l
:l "I
Pk

»
O
.
'
N

e I 4
A
%

e
LA
G X 4y b

Page 66 PRONET Appendix C

'3

‘. S
L4

)

s 0 a

OO0

PRONET also includes features which provide a programmer with the
ability to handle network failures. Programming for robustness in the face of
such failures requires a considerable alteration of programming style, but it
can be done within the framework provided by PRONET, Further discussion of

these features can be found in [Mace82].

v
4

oty te 'e

l'_‘l._ /

P

= i
v

00) u"-.'-" .
AT AR
PR

MLAEN

N
S h

- aa
“. 0

&

h]
CAl o)
‘..'.l

X

LY

4 Ny *y s

Pl
i

LEhvah

;,.
%
A

» >
o
»

A, G- &N ”~
gty y

. .-'_’
_.‘ I\

%
oy .'r.‘::"

:\'_.l 2

$%%5Y

e e
-'o'v'v'l‘
SN .

'
plaelelee

F b
[5

e

l‘ .
3

»
Y N

-
YH NS
of

2,

.
N

.19

&
))5

P
5
l"': ;

»-
g
. &
(4
«
LN

P

.

. »)

NOERTAP L St RN AN v el

\ \'\\ :\'{:' \I\"ﬂ:'.x.\ Y T, '.f J‘:‘- \ . \ AR
*. " -

W .
Y ,.;\t \S f k;

LR RS~

0
o ‘s
.. a o

4 10
y ‘.A:l:l(
PRt

4 Ay
e

.<ﬁ .
7 - KON
; :'Jq'.l& .‘...‘ . LY.

.;-

o

ssl' b
XNV

&

]

Rererences Page 67

[BourT78]

[Brin78]

[Clar80]

[DoD80]
[(Ensl78]

[(Ens181]

[FeldT79]

[Fors81]

[Hewi79]

[Hoar78]

[Jone79]

[Kahn77]

(Less79]

[Lisk79]

[Live80]

(Maco82]

...........

REFERENCES

Bourne, S. R. "The UNIX Shell,™ The Bell System Iechnical Journal
Vol, 57, No. 6, (July-August 1978), 1971-1990.

Brinch Hansen, Per "Distributed Processes: A Concurrent Programming
Concept," Communications of the ACM, Vol. 21, No. 11, (November -
Clark, David D. and Svobodova, Liba "Design of Distributed Systems oy

Supporting Local Autonomy," COMPCON Soring 80, (February 1980), 729-
735.

"Reference Manual for the Programming Language Ada--Proposed Stan-
dard Document,® US Department of Defense, (July 1980).

Enslow, Philip H. "What is a 'Distributed' Data Processing System?,"
COMPUTER, Vol. 11, No. 1, (January 1978), 13-21.

Enslow, Philip H. and Saponas, Timothy G. "Distributed and
Decentralized Control in Fully Distributed Processing Systems,"
Technical Report GIT-ICS-81/02, School of Information and Computer
Science, Georgia Institute of Technology, (February 1981).

Feldman, Jerome A. "High Level Programming for Distributed Systems,"
Communications of the ACM, Vol. 22, No. 6, (June 1979), 353-368.

Forsdick, Harry C, et al. "Distributed Operating System Design

Study: Final Report,™ Bolt Beranek and Newman Inc. Technical Report
4674, (May 1981).

Hewitt, C. Attardi, G. and Lieberman, H., "Security and Modularity in

Message Passing," Progeedings of the First International Conference
on Distributed Computing Svstems, (October 1979).

Hoare, C.A.R. "Communicating Sequential Processes," Communications
of the ACM, Vol. 21, No. 8, (August 1978), 666-677T.

Jones, A. and Schwans, K. "TASK Forces: Distributed Software for
Solving Problems of Substantial Size," Proceedings of the Fourth

International Conference on Software Engineering, (September 1979),
315-330.

Kahn, Gillies and MacQueen, David B, "Coroutines and Networks of

Parallel Processes," Information Processing 77, (August 1977), 993-
998,

Lesser, V., Serrain, D. and Bonar, J., "PCL: A Process-Oriented Job
Control Language,® Proceedings of the First International Conference
on Distributed Computing Systems, (October 1979), 315-329.

Liskov, B. "Primitives for Distributed Computing," Proceedings of

the)Sﬂ.enﬁn Symposium on Operating Systems Principles, (December
1979), 33~42.

Livesey, N.J. "Run_Time Control in a Transaction-Oriented Operating
System,™ Ph.D. Thesis, University of Waterloo (1980).

Maccabe, Arthur B, "Language Features for Fully Distributed Proces-
sing Systems,” Ph.D, Thesis, Georgia Institute of Technology (1982),

38
d
o
B
-
"o
-_'
--
.

4
s
)
.

. ’.
oo,

id
2@

AT TITRIIILIIST L

FYFTYTE

AR

-~

References

William and Sweet, Richard "Mesa

Maybury,

James G.

Language Manual ~- Version 5.0," XEROX PARC CSL-79-3, {April 1979).

[MitcT79] Mitchell,

Ly
.

ACH LS AL AN Gl ik i o i i Al g S ighlieh St g T i U TR TSI - AW RS TR
7

3 Appendix D Failure Handling in PRONET Page 69
oy APPENDIX D
(‘\’ FAILURE HARDLING IN PRONET

~
3

Yy Richard J. LeBlanc
- Arthur B, Maccabe
5 D.1 INIRODUCTION
%:gl New features aiding > design and description of distributed programs
AR are central to the design of PRONET [Macc82, LeB182]. These new capabilities
\s] are being implemented as extensions to Pascal, but since they involve only
f::;f interprocess communication and interconnection of processes via message chan-
3%;3 nels, they could be added to many other languages.

l;? Among the important features of PRONET are the abstraction capabilities
;;:j it provides for the specification of programs as logical networks of proces-
'5:{ ses. Network specification and process description are separated in PRONET by
E:g the division of the 1language facilities into two sublanguages: NETSLA
(- (Network Specification Language) and ALSTEN (an extension of Pascal for
«Q_:\.; process description). These capabilities allow an encapsulated description of
:f; the connections between processes, aiding in the understanding of complex
-E’E programs and providing information a distributed operating system needs for

. making placement and scheduling decisions.

':j: Other programming languages/systems that support a similar separation
¢2€ (UNIX [Bour78], Mesa [Mitc79], Task Forces [Jone79] and PCL [Less79]) do not
ﬁ:ﬁ enforce a complete separation. In each of these languages/systems a process
':f may specify the creation of new processes in its description. Thus, while an
iSE: abstract view of the communication environment is available, neither the
*&;E operating system nor a person reasoning about the program may rely on the com-
2 :: pleteness of this view. In PRONET, the conditions ‘and activities associated
el with any structural modification of a communication environment (inecluding
'ti§ process creation) must be stated in a network specification.
A

;i§ A network specification describes the initial oconfiguration of a
Ny distributed program, in terms of processes to be created and the communication
>3 connections among them, and it describes the evolution of the network of
'253 processes in response to avents. The event handling capabilities of network
1g)

b
Q
ST R I IR S R I R AL SR
DR S T A . - ~ -
o REAGARIEIEARA -, ‘.4' R e el U W

MEAER
.

&
v ®

I
"t

p_—
~ LA

S, 4 N5

A0 B

-t

o oy

e % A

00

$ 1t
a' Al a
:Plt‘k)

x LR
O]

AL
)
PPN
el

L %

D) [alef A g ol .Y,
N s s e r ey

PP A

.
g

OO

’_) ."'[

A% Y
R el /P 4+L

Page 70 Failure Handling in PRONET Appendix D

specifications are the key to providing for a centralized expression of
processes interactions. Message transmissions are events which may be handled
in a specification; a processes may also explicitly announce an event in order
to suggest action by an event handler in its overseeing network specification.
Network specifications rely on a distributed data management system to
maintain information about resource availability and, hence, the activities
expressed in a network specification can be performed in a decentralized
fashion, The distributed data manager enforces serialization of the execution
of event handlers, so network specifications need not be implemented as
processes. Thus an event handler can be executed as part of the process which
caused its invocation and the overall structure of a distributed program can
be thought of as a tree of specifications and processes, with processes only
appearing at the leaves. As a result of this structure, there 1s no single
critical point whose failure can halt the operation of an entire program.,

The failure handling features of PRONET are intended to provide a
capacity for continued execution in the presence of mechanical failures and
the possibility of recovering portions of a program that may have been affec-
ted by such a failure. An additional goal was that the failure handling
features should only impact execution costs to the extent that they are used
in a program. In order to accomplish these objectives, PRONET uses the
concepts of permanent processes and stable storage. The features available
support buffered communication (rather than remote procedure call) 1in an
unreliable environment and make it possible for a programmer to ensure that
the external behavior of a process is consistent with its internal state, even
in the presence of failures.

D.2 DEFINITIONS OF FAILURES
The following definitions of failure, error and fault are presented by

Randell, Lee and Treleaven [RandT78]:

"when the behavior [of a system] deviates from that which is
specified for it, this is called a failure. A failure is thus an
event... We term an internal state of a system an erronequs state
when there exist circumatances (within the specification of the
use of the system) in which further processing, by the normal
algorithms of the system, will lead to a failure which we do not
attribute to a subsequent fault. ...The term sarror is used to
designate that part of the state which is incorrect. ...A fault
is the mechanical or algorithmic cause of an error."

Clearly, faults, and hence failures, can be encountered in any programming

B
- alad

a’ el

...
o
i
-
Cuh @
P 5

- N - P

..........

Lo R TN NN TN NN AN G YT W W, dE v e ; -

e R A NN E S ERICACR 2 G S AN g R A0 AN o ST A et e Sl i it e e e Rde it i e B B R R et B
- R A S i T PN P P M

‘-

Appendix D Failure Handling in PRONET Page 71 .
environment during the execution of any application, . :
The failure handling features of PRONET are based on a separation L
between algorithmic and mechanical failures and an assumed ability to detect 13112
and classify all occurrences of "failures". Considering the general defini- f~_‘\'f:;:};:
[N
tion of failure presented above, an ability to detect and classify all ::f:il
e
occurrences of failures is clearly infeasible. Hence, the failure handling ey
features of PRONET are based on a limited view of failure. In this limited R

view, a mechanical fajlure occurs when a hardware component (processor, storage
device or communication link) has failed to perform in accordance with its
specified behavior. An algorithmic fajlure occurs when an executing process
performs a primitive operation with an invalid operand (e.g., integer
division with a zero-valued divisor or pointer dereference with a nil-valued

pointer).

The distinction between algorithmic and mechanical failures is
introduced to capture differences in the durations and causes of failures.
Algorithmic failures are presumed to be permanent and a result of faulty
programming. Hence, detected algorithmic failures lead directly to the
termination of processes in which they occur. Mechanical failures, on the
other hand, are expected to be transient and a result of a fault in the under-
lying programming environment (i.e., a processor crash or a communication link
failure). Mechanical failures do not lead to the termination of long-lived
processes but may temporarily limit their availability.

D.3 BUFFERED COMMUNICATION AND FAILURES

In a perfect programming environment, the send operation of buffered
communication might be viewed as passing the responsibility for processing
messages to receiving processes. In this way, processes that declare input
ports accept the responsibility for correctly processing all messages that are
sent to these ports. Processes that send messages can rely on the specified

behavior of receiving processes to ensure that their messages are handled
correctly and completely.

Pk I

Clearly this interpretation of buffered communication is inappropriate

SR

when processes can encounter failures during their executions. The initial
extensions developed for wusing CLU [Lisk77] 4in distributed programming

“t

"5"}1"%

environments [Lisk79] were based on buffered communication primitives, More

N

h

,
3?5/'

"‘

AR

LSO

AR
PURA_ IV I BN

X7

r L4t

¢4 |":

[

e

A Ranh

b
"

P AV
." l~ l.. l";ﬁ

- 4 f
B« b

BAls E Hy ':.'l.""U taln
“#. :“l“‘.l z,"‘

"

X
R

L]

XKL |

Yo

o
Yy W,
Rk . A

-

Page T2 Failure Handling in PRONET Appendix D

recently [Lisk80], a remote procedure call (RPC) primitive has been adopted:

"RPC is a very high level primitive... For some time we were
hopeful that there might be an intermediate level primitive that
would solve many of the user's problems, and would not be as
expensive as RPC. Our experience indicates that there is no such
primitive, we have looked for one and have not found it."

Much of the rational for selecting RPC which is presented in [Lisk80, Lisk82]
is based on an inability to resolve the semantics of intermediate level
primitives (e.g., buffered communication) with potential failures and the
intended area of application of the language features being developed.

PRONET is based on an interpretation of buffered communication which is
sufficiently powerful to aid programmers in their task of describing inter-
process communication, yet weak enough to allow for the possibility of
failure. The send operation of PRONET completes successfully when the message
being sent has been correctly copied into the address space of all receiving
processes and all events which are generated by the send have been handled.
Further, the send operation is atomic with respect to failures--either all
events associated with the message transmission are handled completely or none
of these events is handled (and a failure indication is returned). Hence,
after successfully completing a send operation, the sending process can assume
that receiving processes will handle the message in an appropriate fashion.
Receiving processes, on the other hand, accept the responsibility (in conjunc-
tion with the network specification that oversees their operation) for handl-
ing all messages that are available on their input ports.

The crucial distinetion between this interpretation and the interpreta-
tion presented earlier, involves the substitution of the words "handling™ and
*appropriate™ for the words "processing™ and "correct" respectively. In some
applications, under certain circumstances, appropriate handling of a message
may involve ignoring the message entirely. Because of this necessarily weak
interpretation of buffered communication, sender processes that need to know
how their messages were (or will be) handled will need an alternative means of
obtaining this information, For most applications, a simple response port
will suffice. Clearly this complicates the description of such processes but
processes that do not require this information will not incur additional
costs.

P
{7 Appendix D Failure Handling in PRONET Page 73
R
(D.% FAILURE HANDLING
‘A{E An important motivation for introducing failure handling facilities into
(, the design of PRONET was based on the need to describe long-lived obJects.
-{j? PRONET does not provide an inherent distinction between long-lived and
:Eij transient objects--all objects are processes. However, it 1is necessary to
E:? distinguish between the processes in a logical network that are capable of
K surviving mechanical fallures and those whose activities are aborted when they
1;j are in the scope of a mechanical failure, The activity permanent can be
*:E applied to processes and provides & capacity to survive mechanical failures.
§» "Permanence™ is an inherited property. When a "non-permanent® network
i¢*‘ applies the permanent activity to one of its processes, this activity has no
?:; immediate affect. Whenever a logical network becomes "permanent", all proces-
%: ses 1in the network to which the permanent activity has been applied will also
iﬂ become permanent.
:;2 If any process in a '"non-permanent"™ network encounters a failure
:iz (algorithmic or mechanical) during its execution, the entire network fails and
:?t all processes in the network are terminated. In this way, faillures
i'” encountered by processes are propagated to their overseeing network. Propaga-
N tion of a failure continues until a "permanent" network (or process in the
IE; case of mechanical failures) is encountered. Failures encountered by proces-
;Sj ses executing in a "permanent®™ network do not directly affect other processes
i executing in this network.
:ﬂ} 'Permanent' processes can be explicitly terminated or removed (by their
i;; overseeing network specification) and can express their own termination but
‘iq will be recovered (as described earlier) if they have not terminated and are
f;ﬂ in the scope of a mechanical failure. »
;:3 Because mechanical failures can alter the internal state of any execut- ?;
:g; ing process, processes in the scope of a mechanical failure cannot rely on 21
o information stored in their internal state after a mechanical failure has e
;.d occurred. A stable storage facility has been integrated into ALSTEN to enable Eé%%gg
'sg the description of processes that must rely on portions of their internal j}j§§§
jﬁ?ﬁ state when mechanical failures are recovered. Like the facility proposed in ﬁf{i{:
:E [Lisk79], process descriptions interface to stable storage by declaring stable }:;:33
”. variables and periodically "checkpointing®™ the values of these variables, : ‘

-~
FJ
o

-
‘.
‘e
o
.

Y

.
.
‘.
.
‘e
poen
-

F

s
..
» 50

LK) 1:-1

ok~ . NCNLA
A
. L ST WL NS S

2t
P

s e f
l".n‘

—l
. ONg

‘l
» >

S
.

v s
a a2’

s
-

R X

AN ERRRAN
R RO

3

s

AR N

A8 40
A

L

C M
-
"%

Page TU Failure Handling in PRONET Appendix D

When a mechanical failure is detected, all processes in the scope of the
failure are halted before they can begin a new checkpoint operation. When the
mechanical failure is recovered, each permanent process halted by the failure
1s restored using values saved by checkpointing and non-permanent processes

are removed from the logical network.

The features presented thus far are useful for describing long-lived
processes but do not enable receiving processes to ensure that all messages
which have been successfully delivered to their IPC space are handled in an
appropriate fashion when a mechanical failure occurs. An important problem is
that messages will be inserted into the IPC space of a process asynchronously
and hence, a process cannot use inline checkpointing operations to ensure that
all messages which have been delivered will survive mechanical failures. For
this reason, ALSTEN provides stable ports., Any input port declared by a
process may be declared with the attribute gtable. All messages which have
been successfully delivered to a stable input port and not removed by the
receiving process during its execution will be available after a mechanical
failure. Messages are only removed from a stable input port when the process
performs a checkpoint operation,

D.5 PERMANENCE AND EXTERNALLY VISIELE BEHAVIOR

The use of checkpoints, stable variables and recovery descriptions are
sufficient to describe a consistent recovery from mechanical failures, but do
not enable the programmer to ensure that the recovered state is consistent
with the externally visible behavior of the process. In [Lisk80] it is argued
that many applications will need a capacity to incorporate !'permanence of
effuct' in their communications. Using buffered communication, this property
would allow receiving processes to rely on the information contained in the
messages they receive. Hence, ALSTEN provides a checkpointing send operation
which combines both operations into a single operation and is atomic with
respect to mechanical failures.

D.6 PARTITIONING FAILURES

The failure handling features described thus far are primarily aimed at
handling point failures (the fajilure of a single process). A reasonable
implementation of PRONET would be based on a partitioned and decentralized
network representation., As such, mechanical failures could cause portions of

.

".‘.\.‘\ ":-" \.ﬂ’.n '.n")\n

P AR

NN

4 4

.....
........

SR Wt L N DA A A AP o

Appendix D Failure Handling in PRONET Page 75

the network representation to be unavailable for use. Thus portions of the
network representation may not be visible during the execution of an event

handling clause.

Modifications performed by an event clause execution may implieitly

affect objects in inaccessible portions of the logical network representation,
even though the objects explicitly modified by the event clause were available
for use. Consider that port 'p1' is connected o port 'p2' and that p2 1is i

available but that p1 is inaccessible. In this situation the activity }ji;@
"disconnect p2" can be performed but will affect pl, as pl must see the el

disconnection.

When a mechanical failure that has caused a partitioning failure 1is
recovered, portions of the logical network representation will need to be
updated (merged) to reflect modifications performed in other partitions. In

order to perform this merging of visibility partitions, redundant information
must be stored in the logical network representation., In general this redun-
dant information will be stored in the form of back-pointers which can also be

used for efficient traversal of the logical network representation,

D.7 SUMMARY

The important concepts developed in PRONET are based on the separation
of connectivity specifications from process descriptions. This separation
allows process descriptions to be independent of one another, since they can
only describe interactions with the other components of a program through mes-
sages sent to locally declared ports and by announcing events. Thus a programe-
mer concentrates on the logical structure of a program and need not be concer-
ned with such things as physical distribution considerations. The hierar-
chical structure of a PRONET program, consisting of processes and a tree of
overseeing network specifications, is particularly well-suited as a descrip=-
tion of a distributed program. Important features of PRONET allow continued
execution of wunaffected parts of a program in the presence of failure and
recovery of failed processes through use of checkpointing and stable ports.
Finally, PRONET includes an intermediate 1level communication approach,
buffered communication, which operates meaningfully in the presence of
failures. It will thus allow the exploration of the appropriateness of com=
munication protocols other than remote procedure call for the implementation

of realistic distributed programs,

NN\ M
LA A .
..... LA
..-.\.-..u-.n. v e

 RAXXAXNS

g a - " N (]
. . .
. A s . e fe . *
. . . .
B o . . .
d L g
v 5 - 3 .
\ . : e 4 . .
. . B . « h 2
PRSCRAC N . 0 . 3 . ‘ »
. . - . . P
P T T 0 . Je,r . el 3N A
e Te - - .t AP E

a L3 ey
- O
] R
g $9%,8
;8§ §Et§gdd
', o a n o
A o, T 0 H» »
. < IR~
. 0 2 °
2233, 8
, o g8 ~
: t. 0 A © O
. ¢ & & &g g
. Q
w g9 0o
, -
.. O w ¥ 8
5 P @ 8"
-, 68 8%
.- n
© 9 » g
? 8858 2
. 8 o QA o
. = -
o ©« g @]
2y [+ < O
_ a © o >
:, o o~
- o g o 3 P
-l 6 ® aao g
’ w0 a2 6 F
-] Hmitn.
- = H
., - O O a = ©
3 bl 0= o T ~
- § FpETd
A &~ O 8 .
i = o8 88 % o
" [] = o
h 5 8 “ % 8 §
.9 dsE9dE
. o S % O, ©® =® O
Pe o £ &
3 meoma]ﬂ
' wuk]&o.
, - @ % N O ®
, & g 6 ® —~ #
' £ o X @ ~
* N - P M <<
QR @ O — O
de " E B
. - 8 v £
$ 9% o 90 a
iE"85 S
' - 3 8 . -
A S 69 a9
A g & 3 8
o < 3 5
* T3fguE
[» »
5 - LA I~
(¥ a3 2 &

-
. . '.k'
PO

»
)
PO P S0 N

-“
Caw

gl 2
P4 P L

AN
’
7

o
LA XX

‘..'»'l.’
XX . 4
Al R A

.‘ o

References

[Al1c82]

[{Bour78]

[Jone79]

[LeB182]

[Less79]

[Lisk82]

[Lisk80]

[Lisk79]

[LiskT7T]

[Macc82]

[McKe82]

[(Mite79]

(Rand78]

Page 77

REFERENCES

Allchin, J.E. "Integral Data Management in Distributed Real-Time
Systems,™ Ph.D. Thesis Proposal, School of Information and Computer
Science, Georgia Institute of Technology (August 1982).

Bourne, S. R. "The UNIX Shell," The Bell System Iechnical Journal

Jones, A. and Schwans, K. "TASK Forces: Distributed Software for
Solving Problems of Substantial Size," Proceedings of the Fourth

Lonference on Software Engineering, (September 1979),
315-330.

LeBlane, R.J. and Maccabe, A.B., "The Design of a Programming
Language Based on Connectivity Networks," to appear in Proceedings

of the 3rd International Conference on Distributed Computing Svstems
(October 1982).

Lesser, V., Serrain, D. and Bonar, J. "PCL: A Process-Oriented Job

Control Language,™ Proceedings of the First International Conference
on Distributed Computing Systems, (October 1979), 315-329.

Liskov B. and Scheifler, R. "Gurdians and Actions: Linguistic Sup-
port for Robust Distributed Programs," ACM Symposium on Principles
of Programming Languages (January 1982), 7-19.

Liskov, Barbara "Linguistic Support for Distributed Programs: A
Status Report," Laboratory for Computer Science, Group Memo 201,
Computation Structures, Massachusetts Institute of Technology
(1980).

Liskov, B. "Primitives for Distributed Computing," Proceedings of

.ngm)fmmnﬁh Svmposium on Operating Systems Principles, (December
1979), 33-42.

Liskov, Barbara, Snyder, Alan, Atkinson, Russell and Schaffert,

Craig "Abstraction Mechanisms in CLU," Communications of the ACM,
Vol. 20, No. 8, (August 1977), 564-576.

Maccabe, Arthur B,, "Language Features for Fully Distributed Proces-
sing Systems," Ph.D. Thesis, Georgia Institute of Technology (1982).

McKendry, M.S., Allchin, J.E. and Thibault, W.C. "Clouds: A Testbed
for Experimentation in Distributed Systems," Working Paper 3, Status
Leport, School of Information and Computer Science, Georgia
Institute of Technology, (June 1982),

Mitchell James G. Maybury, William and Sweet, Richard "Mesa Language
Manual -- Version 5.0," XEROX PARC CSL-79-3, (April 1979).

Randell, B., Lee, P.A. and Treleaven, P.C. "Reliability Issues in

Computing System Design," Computing Surveys, Vol. 10, No. 2, (June
1978), 123-166.

| Appendix E Software Fault Tolerance Page T9
%
N
!
>
o APPENDIX B
f
A
N SOFTWARE FAULT TOLERANCE:
B> OVERVIEW OF THE RECOVERY BLOCK SCHEME
X
-
Tom Wilkes
i' E.1 INIRODUCTION
} Ever since the first computing systems were designed and built, the
. problem of the reliability of these systems in the face of faults and errors
3
% has been a concern of designers and researchers. However, until approximately

the last decade, most work on system reliability has been focused on the area

i of hardware reliability, even though any non-trivial software system is more

a; complex by several orders of magnitude than the machine on which it runs. As
2’ Randell notes ([Rand75]), a simulator for a certain machine written at the
:‘ level of detail required by the hardware designers is in general many times
ﬁ smaller than the operating system for that machine. Since the number of pos-
g sible internal states of any but the most trivial software far outnumbers the

‘number of possible states of the hardware on which it runs, the possibility of
4 design error in the software is correspondingly greater. Hence, the need for
ﬁ methods of recovery from design flaws in software is at least as pressing as
E that for hardware.

Also in [Rand75], Randell states:

{A ®*If all design inadequacies could be avoided or removed this would
v suffice to achieve software reliability... Indeed many writers
A equate the terms "software reliability" and "program correctness"”.
" However, until reliable correctness proofs (relative to some
correct and adequately detailed specification), which cover even
implementation details, can be given for systems of a realistic
size, the only alternative means of increasing software
reliability 4is to incorporate provisions for software fault
tolerance, "

As Svobodova has noted ([Svob79]), distributed systems have an even greater
potential for providing reliability than their non-distributed counterparts:

"Distributed systems are often claimed tc be inherently more
reliable than systems based on a large central processor. That
is, given that a distributed system is properly designed, it
offers better reliability. First, distributed systems by their
very nature provide opportunities for redundancy. Second, error
propagation is restricted by physical separation of processes and
resources. And finally, 4individual nodes in the diastributed
system may be less complex than a large central processor and, as

o
N

“w
w,
A

15

> AN

-
»

bALE: -\

o i Ve W
wt

-"s &

»Y
L)

L4

" L S T T P e N O e I N D G - - N S
, 20y ERTRITRE R 0T 3 A TICI I Y O A AN et M N L T T T et Lt S e e A e et et T e
3 $‘.\e\)'~';'-$‘- .-‘ '\..._ o .\ “a_{‘ ST - EIE \:- . f\i \". B -« . ettt e~. ol .. K .-. IR LY -.L:‘~ . :'.
) LGRS \.-. - . . ‘\ - R . - LR e
"y Ly 0° ¥ o o - ¢ o AP TSI A \ e .
\ . AR WA . RO R SR iy WA, O AT

. aN e
et T A" SR W T oS A
., e s

.............
.............

SRS ~ Re

Page 80 Software Fault Tolerance Appendix E

- a result, ought to have lower probability of failures. Basically,
N distributed systems have a potential for being more reliable than

:: systems based on a large central processor. However, this
[‘ potential needs to be exploited through proper design."
4 PRONET, a language for distibuted processing applications which has been
;f: under development at Georgia Tech ([Mace82]) incorporates extensive facilities X
!;‘ for dealing with the problem of hardware failures. However, the work to date - b
L on the design of PRONET does not treat the problem of software (algorithmic) i_‘ -
N failures. Algorithmic failures present a much more difficult problem than E.;_
;;i hardware failures. Because such failures presumably result from a logical ‘3}51
*2§ fault in the program, use of checkpointing and restarting will only result in j:E;ﬁ
"' a reproduction of the failure. (In the case where a hardware failure corrup- ;w;i;
ted data and thus caused the algorithmic failure, such techniques may provide ggﬁ{f
E ! a means of recovery.) Thus some capability to execute alternative code is Ef&;i
‘:is required, as well as some capability to undo the effects of the code which has ;i.:g
e failed. The addition of these capabilities to a distributed system will P
Zj; increase the complexity of programming in the system, since processes may %
$;j interact in the recovery mode and during the “undo" process, as well as during E“i}?
¢:3 their normal execution. As Shrivastava and Banatre have noted ([Shri78]),
‘{'. n, . .appropriate programming language tools must be provided to
) o cope with this additional complexity in a systematic manner, 4
;?: otherwise resulting programs are likely to be even 1less reliable s
'ig than versions with no redundancy.™ _&iis
FA s

It is in support of the design of such tools that the present survey is being

undertaken.

§\E In an excellent review art .cle ([Rand78]), Randell, Lee, and Treleaven :;;:
é:i‘ have surveyed the issues of hardware and software reliability, and have 5%;55
:: catalogued current techniques for error recovery and fault tolerance. A :gxéf:
. repetition of their work will not be attempted here. Rather, the results of oo
;Q;ﬁ their survey will be summarized, and two important techniques for software ;i:{}
;E; fault tolerance -- the so-called forward and backward error recovery methods fyfgi
i -- will be briefly contrasted. However, the bulk of the discussion will Y,
~L:f center on a particular backward error recovery scheme, the recovery block {w.ff
:;} method, which is discussed in [Rand75], [Rand78], [Ande81], and many other ? .
EES publications which have issued from the software fault tolerance project at :?%
I:; the University of Newcastle upon Tyne (most of which will be discussed below). %:i\
o Recent publications which consider the application of these recovery tech- -

*5 niques to distributed computing systems will also be discussed. ﬂi:

o~

LA
A4

Fie

:‘f' AN AT L
SRR LA AL S
ADS IS W) ‘.{"‘-‘(’

' ALY NS

o p o pa s pt e
I AEATIA AL I I NP AR
A

’ Appendix E Software Fault Tolerance Page 81
o
o E.2 SOME TERMINOLOGY
J'E In [Rand78], definitions for many terms used in the discussion of
(; software fault tolerance have been provided which have been adopted by sub-
fi; sequent papers from the project at Newcastle upon Tyne and also by several
':3 other authors in the field. For convenience, some of these definitions are
?S:S reproduced here:

"The reliability of a system is taken to be a measure of the suc-
cess with which the system conforms to some authoritative

::: specification of its behavior...
ﬁxf When the behavior of a system deviates from that which is
o specified for it, this is called a failure...

We term an internal state of a system an erroneous state when the
state is such that there exist circumstances (within the
e specification of the use of the system) in which further proces-

{{ﬁ sing, by the normal algorithms of the system, will lead to a

3}? failure which we do not attribute to a subsequent fault... The

L term "error" is used to designate that part of the state which is
"incorrect"”...

A fault is the mechanical or algorithmic cause of an error, while
a potential fault is a mechanical or algorithmic construction
within a system such that (under some circumstances within the
specification of the system) the construction will cause the
system to assume an erroneous state.,.."

Aty
X000

ﬁ{

Note that, using the definitions of "fault™ and "error" given above, the

-

. method of repair of faults and errors in a system is very different. In
:ij particular, the repair of a fault in a software component is a complex task
‘Eg which would be very difficult to automate, and which should be accomplished by ;.
b manual means in an unharried manner. Repalir of an error, on the other hand, .
A entails the change of the erroneous state into one in which processing may ;{ifz:
g:é continue correctly (within the specification of the system), or the restora- ES&E&
s tion of a previously-existing state which satisfies these specifications. We RS
‘FL' shall see that this process 1is automatable. Thus, repair of an error is A
;bs: required for continued operation of a system, whereas the repair of the fault fi_
';}; which caused the error is not always necessary for ensuring continued f;i
o operation. ;:;:
N E.3 METHODS FOR SOFTWARE FAULT TOLERANCE ot
§§ As has been mentioned above, [Rand78] provides a comprehensive survey of :gziia
. techniques for hardware and software fault tolerance. The authors consider :Eﬁ{:%'
'ia strategies for error detection, fault treatment, damage assessment, and error e
}:& recovery as comprising a classification of fault-tolerance techniques. These tust
:y strategies are by no means mutually exclusive, as we shall see. -~
Y Ry
2 7

Page 82 Software Fault Tolerance Appendix E

E.3.1 Error Daeteation
As defined in [Rand78],

"the purpose of error detection is to enable system failures to be
prevented by recognizing when they may be about to occur."

In order to fulfill this purpose in the ideal case, however, the checks which
would have to be made would have to be based solely on the system specification,
and independent of the actual implementation to a degree probably not
realizable in practice. Also, the extent of error checking necessary would
probably fall vietim to performance considerations. Thus, the complete con-
fidence afforded by the ideal case is generally not attainable, and some "very
high® level of confidence is all that can be expected. However, all
strategies for fault tolerance depend on error checking for their invocation.

E.3.2 Fault Ireatment
Error detection seeks only to identify the symptoms of a fault, but does

not try to identify the particular fault which caused the error. The
identification, location, and removal of a fault is a complex job, since many
errors may be caused by a particula» fault, a particular error may be caused
by several different faults, the error caused by a particular fault only occur
for certain input values, ete. Thus, the automation of the task of fault
removal in software is not feasible except in very simple cases. However, the
treatment of faults by alternative means, such as replacement strategies, is
more tractable; indeed, the recovery-block scheme which is discussed below is

such a strategy.

E.3.3 Damage Aasesasment
As noted in [Rand78],

"Damage assessment can be based entirely in a priori reasoning, or
can involve the system itself in activity intended to determine
the extent of the damage. Each approach can involve reliance on
the system structure to determine what the system might have done,
and hence possibly have done wrongly. The approach can be
explained, and might have been designed, by making explicit use of
atomic actions."

The intent here is that atomic actions provide a "sequence of delimitations
cos of amounts of possible damage corresponding to each different error
detection point." Since, as the authors note, damage assessment is often nec-
cessary to attempts at error recovery, and "is usually a rather uncertain and
incomplete affair®™, it is worthwhile to expend the effort involved in limiting
the spread of damage by such means,

s
(XA s
Ay

[
¥
s

Sl

(s

“
YN

o
L
'Y

4
‘AD-A141 581 SOFTHHRE SUPPORT FOR FULLY DXSTRIBUTED/LOOSELV COUPLED 2/3
PROCESSING SYSTENS.. (U) GEORGIR INST OF TECH ATLAN
. SCHOOL OF INFORMATION AND COMPUT .~ P H ENSLO
UNCLASSIFIED JAN 84 GIT-ICS5-82/16-YOL-2

¢

-n
~
=
0
~
n

I A
| I A .
I
I
EEEEEEE

o4 P LI L L e 4 AL

v .
. _v.ta

%A |

e
-

i

w

I
22

.1
g £ 1

22 Tt nie

EEER

FFEFEEE

EC
4
Ee

y e, -
' J
IS

v A)
.

v
{,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS: 1963 A

“a"®" q- 4

RS I T S I ‘J{z.* LUV IR I I
PHLETIAS EHLE Ch bR AU EC BRGNS S C A AN

S P Ry .v:a“‘.“t-‘ A Pal o A A Al el e e Ak e Ja s e 'j_.
. . . - AN N - - . EREEIIL LA

KRR
~\"..J

Appendix E Software Fault Tolerance Page 83

E.3.4 Error Recovery

Methods for error recovery are divided intc the so-callec forward and
backward automatic recovery schemes. Forward recovery schemes attempt to make
further use of the erroneous state. Thus, predictions about the location and
consequences of software faults are necessary. Such a scheme must therefore
be designed as an integral part of the system for which it is to provide fault
tolerance. Also, the questions of damage assessment and fault treatment are
intermingled with the question of how to continue to provide service. Despite
the complexity which such a scheme adds to the system it is to serve, there
are situations in which valid assumptions can be made based on knowledge of

the system for which forward-recovery techniques provide simple and effective

error recovery. In particular, these methods are very effective 1in dealing iéij.

with such situations as errors caused by invalid input data. The exception- ﬂgﬁ

handling methods used in languages such as PL/I and Ada are examples of Eﬂi

forward-recovery methods. b’*}t‘.
Backward-recovery schemes, on the other hand, involve restoration of ;Z§fg

what is hoped to be an error-free state, and thus require no predictions of 3;&;&

the 1location or nature of faults, Rather, backward recovery is analogous to SRR

[

mechanical backups in hardware systems. Information about the system state

N
oo B

previous to the fault is restored from a checkpoint, and a back-up process is
started. The back-up process is necessarily not the same as the failed
process, as it would presumably only fail again. In general, the back-up
process (or processes) is more simple than the original process, and may
provide only a primitive simulation of the functions of the original process

(such as forwarding messages) in order to keep a program running.

The recovery-block scheme, an example of a backwards-recovery scheme
which has been the object of detailed investigation at Newcastle upon Tyne, is
described in the next section.

E.4 THE RECOVERY-BLOCK SCHEME

The recovery-block scheme described by researchers at the University of
Newcastle upon Tyne ([Rand75], [Rand78], ([Ande81]) is an example of a
backwards~-recovery method. This method is a means of providing "“gracefully
degrading software" ([Ande81]). The syntax for describing a recovery block

is:

Software Fault Tolerance Appendix E

assure <acceptance test> by
<original block>

else by
<back-up block 1>

else by

else error;

o e
*

k}f"

where some of the "back-up blocks" may be simple retries of previous blocks.,

If a failure occurs in the original block, back-up blocks are tried until one
completes without failure and the acceptance test is satisfied, or else an error
is signalled. The back-up blocks may have to undo permanent effects made by
their predecessors before doing their own work,

Zatalalalsad am

E.4.1 Acgeptance Tests

The function of the acceptance test is to ensure that the operation per-
formed on the system state by at least one of the alternate blocks is to the
satisfaction of the invoking program. Thus, an acceptance test need not be a
check on the "absolute correctness of an operation® ([Rand75]). In general, a
test is based on the present and prior values of variables global to the
alternate blocks and to the invoking procedure. Also, some means is provided
for checking whether global variables not accessed within acceptance test have
been modified, thus giving a measure of security against unforeseen side
effects.

It i1s clear that the careful design of acceptance tests is important to

the success of the recovery~block method. However, strict requirements for

correctness must often yield to performance considerations, as in the follow-
ing example from [Rand75]:

ensure sorted (S) and (sum (S) = sum (prior S))
by quickersort (S)

else by quicksort (S)

else by bubblesort (S)

2lse error;

Here, the strict requirement that the sorting algorithm yield a permutation of
its 41input values has been relaxed to a requirement that the sum of the input
values and the sum of the output values be the same.

E.A.2 The Reaavery Cache
Before a back-up block may be tried, the state of global objects must be

restored to that existing before the failed block began execution. This state

Appendix E Software Fault Tolerance Page 85

restoration is made possible by the use of a recovery ocache, in which the
values of global variables are stored prior to their first updates in the
current block. A recovery cache is essentially a differential file, and is
thus 1less costly in space than a full checkpoint. Since recovery blocks may
be nested, the cache is organized as a stack; state restoration for the
current recovery block requires restoration of global variable values from the

current top stack entry, and upon completion of a block, the stack entry is
discarded, thus "committing®™ the results of the block.

Thus, the problems of state restoration and recovery for simple global
variables are relatively straightforward. However, in general, the actions of
interacting processes may be more complicated than simple assignment to a
global variable; there may be, for instance, competition for global resources
(say, peripherals) or cooperative use of resources for inter-process com-
munication (say, a shared message buffer). As has been noted in [Shri78], for
arbitrary interaction of processes, the problem of the management of recovery
information and the control of processes may become extremely complex.
However, they show that it is possible to break these interactions down into
different classes - interference, cooperation, and competition - and to
develop mechanisms to treat the recovery problems posed by these different
types of interactions separately.

E.4.3 Error Recovery in Cooperating and Competing Progcesses

The bulk of [Shri78] is devoted to the consideration of the problem of
competing resources. This problem is simpler than that of cooperating resour-
ces for the following reasons: while cooperating processes can exchange
arbitrary information (for instance, via a message buffer), competing proces-
ses typically exchange only that information required to ensure proper synch-
ronization and sharing of resources. Thus, for competing processes, the type

of information exchanged is known to (and generally controlled by) the synch-
ronization mechanism.

However, since the information exchanged by cooperating processes may be
arbitrary, in general only the recipient of the information may verify it. 1In
[Shri78], the example of a producer and a consumer connected by a bounded mes-
sage buffer 1is considered. For verification reasons, "production®™ and
i "consumption" of a message are programmed as a oonversation, and when the
,;. producer and consumer processes enter a conversation, they are allowed to

--------------------- L I e N P LN N G N WY} At N et e . e,
* AT "-.“‘.'-\"'\.¢ -q_"- !‘\" b '~\:"\'~. DR \-‘ o e f e
[t - ~ " e w AP AN Y
‘-‘q .~ '.. _'-. - h ‘..‘ > ..< ‘i ..q‘ e - . - DR ERS -

....', - ..Q.

u'$- LR "

Page 86 Software Fault Tolerance Appendix E

leave it only when both pass their acceptance tests. This prevents the
producer from "racing ahead" of the consumer and thus can seriously limit the
amount of concurrency possible. Whether the conversation mechanism may be
supplemented by some other mechanism to ameliorate this problem is currently

under investigation at Newcastle upon Tyne.

E.4.4 The Domino Effect

Another problem in the application of the recovery block scheme to
cooperating processes is the so-called domino effect ([Rand78], [Ande81]).
This effect arises from attempts by the individual communicating processes to
achieve backward recovery. If two processes independently establish recovery
points or checkpoints, and communication between them may occur at arbitrary
times, then we may have the scenario represented in the following diagram
([Ande81]):

Process 1:

o~
e
e
+
v

—
-—
-
—
-—
—_—
—

Process 2: 4 £

4
) ud
v

Here, the vertical lines represent occurrences of communication between the
two processes, and the square brackets indicate an active recovery point to
which the state of a process may be restored. If process 1 experiences a
faillure after its most recent recovery point, it may try to restore its state
at that point. Since it has not communicated with process 2 since that point,
process 2 need take no recovery action. If, however, process 2 encounters a
failure after its last communication with process 1, process 2 must restore
its state to its most recent recovery point, which occurred before its last
communication. Thus process 1 must be restored to a point at or before
process 2's recovery point, since the state of process 1 was changed by the
information exchange which took place after that point., However, the most
recent recovery point to which process 1 can restore occurred before this
exchange, which will similarly cause another rollback in the state of process
2, ete. Thus, an uncontrolled propagation of rollbacks in process states may
occur, much like a line of toppling dominos. This effect does not occur for
independent, competing processes, since no such information flow occurs
between them.

Thus, a basic problem in recovery is the search for a "conaistent" set

Appendix E Software Fault Tolerance

of recovery points, that is, for a set of checkpoints for which the domino
effect does not occur, A consistent or usable set of recovery points is cal-
led a recovery line ([Rand78]).

As Randell has shown ([Rand75]), in order to obtain a consistent set of
recovery points for a group of freely-interacting processes it is required
that the pattern of interactions among the processes be known in advance. As

< b
tak.at

‘e

., AT AT
4.".".'. St
. Y e

wta et

& A N

this is a rather unrealistic requirement, we must consider two alternatives
([Verh78]1): (1) prevent the interactions, as in implicit or explicit locking,

or (2) synchronize the processes with respect to recovery. We shall see that

R,

e e
/’ i
UL N S

it is the 1latter route which has been chosen by the group at Newcast.le upon
Tyne.

Recent work on recovery lines reported in [Ande81] has led to the
lowing definition of a restorable action:

"An atomic action is said to form a restorable action if: (i) on
entry to the atomic action all processes establish a recovery
point, (ii) these recovery points are not discarded within the
atomic actions, and (iii) processes leave the atomic action simul-
taneously." ([Ande81])

Within a restorable action, backward recovery may be accomplished by restoring
the recovery points established for each process upon entry to the action 1f
an exception i1is raised by any of the processes involved in the action. This
protocol can be seen to be equivalent to the conversation protocol described

above,

Work on extending the recovery-block method to cooperating processes is
described in [Ande81]. 1In particular, strategies for avoiding the domino
effect are discussed, As has been mentioned above, requiring communicating
processes to enter into conversations from which all processes involved must
exit together (thus committing the results of the conversation) will avoid the
domino effect at the cost of lost concurrency, much as for the requirement of
two-phase locking for synchronizing processes, Indeed, the conversation
mechanism is seen to fulfill the requirements of a "recoverable action" as

defined above. In work by Russell ([Russ80]), certain protocols for ordering

message sending and receiving have been developed for which it can be shown
that uncontrolled rollback cannot occur.

E.4.5 Recovarable Monitors
While investigating the simpler problem of competing processes, however,

ABASARLAL AT L2l AL S ALELEL AN SELE LU E S AL AR N L S GO AL AR A AT GRS I A AU C ARy
U

ANA
Page 88 Software Fault Tolerance Appendix E

z
NN
}}: Shrivastava and Banatre have developed language features to support recovery
:ﬁ: which may have more general interest. They introduce the idea of a
(i:‘ recoverable monitor, in which access to resources is controlled by a feature
$ﬁ called a port, which is similar to the class and "inner" constructs of SIMULA
:%‘ or Concurrent Pascal. Assuming a Concurrent Pascal-like language, the syntax
\"-

:}: of a port construct may be summarized as follows ([Shri78], [Ande81]):

.L [entry] type <name> = port (formal parameters)

= "entry is an optional feature"
- begin ...local variable declarations...

f:- « s o procedures/forward entry procedures, e.g.: ...
ox forward entry procedure <name> (formal parameters);

begin ... end;

\ ««.Other procedures/forward entry procedures...
o [backward entry procedure <name>;
-ff "this procedure is optional™
O begin ... end
N s1; inner; s2

"s1 and s2 are statements, where s1 is the prelude
and s2 is the postlude™
end "of port definition"

8
&,

< W3
oy,

~§2 The organization of the port construct reflects (and enforces) a resource-
C . access protocol considered in [Shri78]. There, the types of recovery actions
- necessary when failure occurs at various points in the protocol are developed.
;;ﬁ In particular, the protocol requires that only the prelude and postlude of the
;f; port may acquire and release resources, respectively. Also, the backward
: entry feature allows specification of an "undo™ block, whose purpose 1is to
i:; undo the effects of the execution of the forward entry blocks, which is neces-
j:: sary for state restoration of arbitrary global objects.
‘fiJ If failure occurs during the prelude of a port (s1), this means that all
14f alternatives of the resource-acquisition block have failed, and thus the port
jj§ fails, If failure occurs after acquisition and before use of a port (between
;is s1 and Jinner), then to restore the state of the (abstract) port, the only
:sg action required is the release of the acquired resource; thus, the postlude
. (s2) must be executed. The use of a resource (inner) is considered to be an
'ii atomic call on a recovery block, and if failure is signalled, then only execu-
{Q% tion of the postlude is required. If failure is detected after the use but
3;& before the release of the resource, then the backwards procedure must be
55 executed to undo the effects of the user procedure, and then the postlude must
:j; be executed. A failure during the postlude (s2) means that it was not pos-

_______ SN -® AR TR R A T R R TR S L e T N N VI A T T AT AN A RO ACH IS AR ,"_r .7
Appendix E Software Fault Tolerance Page 89
‘ sible to release the acquired resource -- an unrecoverable error.
= E.3.6 Effeqts on Software Complexity
‘ As has been noted above, forward-recovery methods must be designed as an
::" integral part of the software which they are to serve. Thus, they may add
{.‘ significantly to the complexity of this software. In contrast, the recovery-
\'7 block scheme provides a means of explicitly separating the error-detection and
o recovery functions from the rest of the software, and thus should add little
\ to the conceptual complexity of a module. In addition, it is possible (and
\ indeed desirable) that the design of any back-up blocks provided proceed
’\: independently of the primary block and of each other, This independence of
\ the alternative blocks may produce a significant reduction in the complexity
;‘ of software employing the recovery-block method as compared to software using
¥ : ad hoc error detection and recovery methods ([Ande81]). Also, the requirement
e of acceptance tests is more rigidly enforced than the use of assertions in
‘ some systems, thus providing an enforced verification method.
j E.A.7 Problens in Implementation for Diatributed Svatems
‘\-Z-j Several problems crop up in the implementation of backwards~-recovery
schemes for loosely-coupled distributed systems under decentralized control
N which are not apparent in implementation for non=distributed systems
;S ([Ande81]). Cooperating processes in such systems must exchange control ‘
:.: information in addition to exchanging data in order to coordinate the recovery -:~.'_:-.:}_:
a process in the absence of a central coordinator. In an unsafe message-passing ’7.""'
..,.'_:: system, there may be significant delay between the sending and reception of j:::j;_‘:::_:"
'.'-_. these control messages, or they may become corrupted or lost. This adds :~1:ﬁ:
,,\ greatly to the complexity of the recovery problem. :Et\:)\
' If a distributed recovery system relies on planned recovery lines, there I
:.'i';: is a need for coordination of the exits of processes from restorable actions '
:,': in order to insure the existence of these recovery lines. This necessitates
;.SE the existence of a central coordinator, such as that in System R (see below), A
which governs a two-phase commit protocol not unlike the conversation E 4}.
;TE;I mechanism discussed above. '-f:‘: s
’. A system may instead search for unplanned recovery lines. Such a system
.:::j is studied in the occurrence graph scheme ([Merl78]). An occurrence graph 1is A
_. a historical record of the dependencies between communicating processes due to _\'._\.:
:3‘ the information flow between them. Such a record is kept by each process in SE'\
e :\::\::‘-
2 RS

L3 I

P
s .‘t{'l .'l “v

»
.
.

MY
LA t.'{"r:r.‘b'

Py Y T,

M RN g
.s L4 [
SR

LL

b

e
LR
7

Page 90 Software Fault Tolerance Appendix E -
the system. Should a process need to restore a recovery point, it must send a Tf;f::
FAIL message to those dependent processes as given by the occurrence graph in ‘?
order to maintain the consistency of the system state. Each process which ;;;;ih
receives a FAIL message must cease its normal activity and also send out FAIL BRIt
messages to all of its dependents. The assumption must be made that the FAIL li;izf:
messages propagate faster than normal messages (and that none of them are Eﬂfﬂ;ﬁ;
lost). In this way a recovery line may be eventually identified. This scheme iT-;gi
is known as the chase protocol. Unfortunately, recent investigations have i
shown that this method is highly prone to the domino effect ([Ande81]).
E.5 QTHER BACKWARDS-RECOVERY SCHEMES R
Several recovery schemes which bear similarities to the recovery block ;.?ﬁlj

scheme have been discussed in the literature (see [Ande81]). System R, an
experimental data-base system ([Kohl81], [Gray81]), employs a "DO~-UNDO-REDO"
system for treatment of hardware failures via maintenance of an incremental
log with write-ahead. A centralized "coordinator" controls a two-phase commit
protocol, and independence of actions is required to avoid the domino effect.
The REDO of an action is effective only for idempotent actions (i.e., those
for which multiple executions are valid), and the System R scheme is thus less
powerful than the alternative~block strategy of the recovery-block method.
Another similar method is the deadline mechanism for real-time systems, where
the acceptance test of the recovery-block scheme is replaced by a time-out
test. Yet another fault-tolerance method is the so-called N-version scheme,
in which the results of applying several different algorithms to the solution
of a problem are compared for agreement.

E.6 UNIFIED YIEW OF PROGRAMMED AND AUTOMATIC EXCEPTION HANDLING
In a recent paper from Newcastle upon Tyne ([Cris82]), Cristian

initiates the development of a formal view of the concepts underlying software
fault tolerance in order to elucidate the unity between programmed exception
handling and default exception handling using automatic backwards recovery.
Also, his formal development demonstrates the existence of a class of design
faults which cannot be treated using automatic methods such as the recovery-
block method.

Cristian bases his model on a view of programs as a hierarchy of
modules, assuming that this structure is the result of the application of data

Appendix E Software Fault Tolerance Page 91

abstraction techniques to program development. Thus, a user would view a
module M as an abstract variable of some abstract data type, that is, a set of
abstract states and transitions between these states (produced by the
operations exported by M). The internal structure of M (not visible to the
user) is a set of state variables and procedures which operate on these

variables,

The 1internal state of the module M is defined as the aggregation of the
abstract states of the state variables of M. The abstract state of M is the
result of applying an abstraction function A to the internal state of the
module M. Note that this definition is recursive; the state variables of M
may themselves be the abstract states of lower level modules., Presumably,
however, the recursion bottoms out in the 1lowest 1level modules, where the

state variables are actual data structures,

The abstract state of a module is in general a partial function defined
only over some set of internal states which satisfy an invariant predicate 1I.
The states which satisfy this predicate are said to be consistent with the
abstraction which is supposed to be implemented by the module, However, a

module may during execution pass through states which do not satisfy this
invariant predicate, and thus for which the abstract state is not defined.

The intended service of a procedure P exported by the module M is
specified by a relation post over pairs of initial and final states (s',s) of
the state transition accomplished by the procedure. A pair of states (s',s)
is said to be in post if the final state s is the intended outcome of invoking
the procedure P in the initial state s'. The characteristic predicate
associated with the relation post is called the standard postcondition of P.

The standard domain (SD) of a procedure P is defined as that set of
initial states s' for which execution of P terminates normally in states s
such that post (s',s) holds., If P is invoked in an initial state s' outside
its standard domain SD, an exception ocours. Such states s' belong to the ex-
ceptional domain (ED) of P, that is, the set of states which do not belong to
the SD of P,

To illustrate these concepts, Cristian presents the following short

-l
- -’..
3
y
i

%) example. Let intended service for some procedure P exported by a module M be
.
;f: specified by post == 1 = i' + J', where i' and J' denote the initial values of
Y
?jy state variables i and j of M, which are of type positive integer. If the body

-
NN

had
1]
L]

Software Fault Tolerance Appendix E

of the procedure P is
i:=414+

and PI 1s the set of machine-representable positive integers, then the stan-
dard domain SD of P is 1' + j' in PI, and the exceptional domain ED of P is i'
+ j' not in PI. Had the programmer by mistake typed "#" instead of "+" in the
body of P, then the SD and ED of P would be

(i* = j') and (i' = 0 or i' = 2) ED = ~SD

A programmer, in the design of a procedure, may anticipate that the procedure
may be invoked in initial states outside its standard domain, i.e. in its
exceptional domain. The programmer may detect such anticipated exception oo-
currences by such means as run-time checks. However, in general such checks
may be redundant, since the condition which the check is supposed to detect
may be detected by the hardware before the check can be executed. Also, 1in
general it does not make sense to continue normal execution of a program after
such a condition becomes apparent. Thus some languages contain features
allowing the programmer to express actions to be undertaken in place of normal
execution upon an exception occurrence. Such features are termed exception
mechanisms.

As an example of the explicit programming of handlers for exception
occurrences, Cristian gives the following:

proc P signals OW;

J
k [OV =>4 :=1 - j; signal OW;

Here, the first line of the example expresses the existence of two exit points
from the procedure P: the normal exit, and another exit on occurrence of the
exception OW. On the third line, if the addition causes an overflow exception
(OV), a handler which merely signals the exception OW to the invoking
procedure is executed. Note that, if the addition causes overflow, the
assignment is not executed, and thus the initial state remains unchanged.
Similarly, on line four an OV exception will cause execution of a handler
which undoes the effect of the preceding line (by subtracting the value which
was added there), and then signals OW. This has the effect of restoring the
initial state.

5 b A BARADND e phoae e e S R I DA A IAARA S A SLNL HLAL S RAAUMES AL ML ASAEAMAS SR EAC A AR AT M EAA A |

..... . - -~ P 7.' '::-:.:J
Appendix E Software Fault Tolerance Page 93 Q#
The standard postcondition for this procedure may be expressed by post ~'j ‘
== 1 = 1' + j' + k'. However, if the exception OW is signalled by P (i.e., 1if R

it uses its exceptional exit), then its exceptional postcondition
post (OW) == (i = i') and (Jj = J') and (k = k')

is satisfied. 1In general, if E is an exception signalled by a procedure P,
then post (E) specifies the intended state transition when P signals E.

The procedure P giver above is said to be total, since its behavior i=

specified (by means of its standard and exceptional postconditions) for a :;:’_:';'._-'.j
initial states, both in its standard and exceptional domains. Also, 1 ::j:j-; <
exceptional postcondition is of the form A(s') = A(s), that is, the abstr: .

state upon exceptional exit is the same as upon invocation. A total operatic

for which post (E) has such a form is called an atomic operation.

Here, Cristian notes that since exception detections may signal attempts

to violate invariants which are maintained by communicating processes, the

j.~. notions of atomicity with respect to exceptions (recovery atomicity) and

,.:. atomicity with respect to synchronization (concurrency atomicity) become

W interrelated.

‘_{ As has been noted above, when an exception occurrence is detected, it is

:.':I possible that an inconsistent state exists, that 1is, one for which the

‘j::: invariant I of the module M is not satisfied. Since further use of an g
"" inconsistent state can lead to unpredictable results, it is necessary to mv»
-':.:-: recover some consistent state. The set of state variables of the module M for ‘:
‘.::}:: which a consistent final state s may be reached by modifying the state these \:f
:- variables have in the inconsistent state i, and for which the final state s E_:
\ satisfies the relation ;\;::3-_‘,:.
"'_ I (s) and post (E) (s',s) r,_.“:
,". is called a recovery set (RS). Further, an inconsistency set (IS) is a ::,;-*
- ::lf recovery set for which, for any other recovery set RS, |IS| <= |RS| (where the ;":":':_':'-\
:_:f vertical bars indicate set cardinality). Thus, IS is just the smallest of the "‘:'
:,. (in general) several possible recovery sets. :\‘
\;r’-. When atomicity with respect to exceptions is desirable, there are some \:"\
- other recovery sets of interest. The inconsistency closure (IC) associated e @
o with the inconsistent state i is defined as the set of all state variables .:::E:.'E::
, modified between entry into the procedure P and the detection of an exception .'-z.’‘
. “;- . E:::::Z:

s 4
I'e

|

{

I A A A I M R B e it e

-

Page 94 Software Fault Tolerance Appendix E RS,

®.
E during the execution of P. Note that IC is trivially a recovery set, since

the final state s is identical to the initial state s' upon restoration of the .
initial states of all the modified variables, and - —;«!
I (s) and (A (s') = A (s)) S
el
is thus satisfied. A crude approximation to the IC is obtained by storing the j:ﬁ:;_j
RN
whole set of the initial states of the state variables of M, obtaining a com- jﬁiﬁ;ﬂ

plete checkpoint.

If atomic behavior is not necessary for a procedure P, then Cforward

recovery may be used, as discussed above. Then the recovery actions are
(necessarily) based upon the designer's knowledge of the semantics of P. Ir,
however, it is desirable that P behave atomically with respect to exceptions,
then the use of IC sets or checkpoints to restore a consistent state 1is neces-
sary. As has been noted above, this method is called backward recovery. As
we have seen, it 1is possible that the IC or checkpoint may be determined
automatically, yielding automatic backward recovery, in contrast to explicitly

programmed backward recovery.

As defined above, a necessary condition for the atomicity of an opera-
tion is that the operation be total. However, in practice the design of total
operations is difficult. Thus, in most cases the designer of an operation
anticipates only some subset of the exceptional occurrences possible in that
operation. The true standard and exceptional domains of the operation may
therefore be other than those which the designer imagines. The portion of the
exceptional domain for which the designer provides a specified exceptional
exit point is called the anticipated exceptional domain (AED). That portion
of the ED not included in the AED is called the unanticipated exceptional
domain (UED). The operation may terminate normally when invoked in its stan-
dard domain, in a state satisfying post (E) when invoked 1its anticipated
exceptional domain, and in an undetermined state when invoked 1in its
unanticipated exceptional domain.

To i1llustrate these concepts, Cristian rewrites the example given above
as follows, where the intended and exceptional services were specified by the

relatic-s

post == 1 = 1* + §* post (OW) == (1

i') and (J = ')

and the procedure body is

..........

Appendix E Software Fault Tolerance Page 95

broc P signals OW;
i := 1%j [OV -> aignal OW];

Here, the programmer has mistakenly typed "#®" jpnstead of "+". Then the
domains for this example are

SD
ED
AED
UED

(i* = J') and (i' = 0 or 1' = 2)
“SD

~SD and (i'®j' not in PI)

~SD and (1'®j' in PI)

There are several possible outcomes of the invocation of an operation in

its unanticipated exceptional domain: it may never terminate (go into an

infinite loop); a lower level procedure may detect (and propagate) an excep-

tion not anticipated by the designer of the operation, and for which a handler
does not exist; the operation may terminate at its standard exit point in a
state not satisfying its standard specification; or it may terminate at its
exceptional exit point in a state not satisfying its exceptional
specification.

The problem of handling unanticipated lower-level exceptions is treated
in Ada by continuing the propagation of the lower-level exception to higher
levels if no handler is present. Cristian claims that this solution is
dangerous for several reasons. According to the principle of information
hiding, the upper level procedure may know nothing of the lower 1level excep-
tion, and thus have no handler for it. Also, continued propagation violates
the principle that the flow of control should return from the invoked
procedure to the invoker. In effect, the flow of control is through an
undeclared exit point from the procedure propagating the exception.

A simpler solution, Cristian states, is the provision of default hand-
lers for these unnamed exceptions by the compiler. This implicitly~-provided
handler may be used as follows:

broc P aignals E;
hegin

end [-> DH];

Here, DH denotes the default handler, and the "™ ™ before the arrow denotes any
exception for which there is no handler explicitly provided.

'-' ‘l' ,",‘r(
ra ~

P4
.

r'} "l
i
» {- f‘

Y

—

‘l."r. .' t .

NS~ RRCAAA S

S

. A ’. {A "4 ’,
RRNIIY

T ..V' 0

OO
lr‘

FA A A
Sl b G Y

Ay
Pl

G
RS W
X 4

[

Page 96 Software Fault Tolerance Appendix E

The purposes of such default exceptic - handlers may be the masking of
exceptions, that is, making it appear to higher level procedures that no
exception has occurred at all; the recovery of a consistent state; or the
signalling of an exceptional occurrence to a higher level procedure. The CLU
language is oriented towards the latter goal, in effect providing a default
handler of the form

DH == gignal FAILURE.

The language SESAME under development at the Universtity of Grenoble is
oriented towards both recovery and signalling, providing

DH == reset; signal FAILURE.
Here, the reset primitive restores the initial state of the operation.

The recovery block mechanism, on the other hand, 1is oriented towards

fulfilling all three goals. A recovery block, such as

RB == ensure post by PO
else by P1 else FAILURE;

may be expressed in terms of default exception handlers as follows:
RB == PO' [-> reset;
P1' [=> reset; signal FAILURE]]
where
Pi' == begin Pi; [~post -> signal FAILURE] end;
for 1 =0, 1.

Thus default handlers are at least equivalent in power to recovery blocks.
This suggests that recovery blocks are implementable under any system which
provides default exception handlers and a reset primitive. Although less
powerful than default exception handling, the recovery block scheme 1is
preferable (at least at the application level) since it provides a useful
abstraction of a rather messy technique.

An operation is said to be weakly tolerant to an exception D if D is
detected and the (programmed or default) handler of D recovers a consistent
state before propagating D to the invoking procedure. An operation is strong-
ly tolerant to D 1s it can mask the occurrence of D to higher-level
procedures. As may has been seen from the discussion of automatic error

recovery above, these methods may be used to render the transactions of a

i s dar i ha” iR A A et ~ i ofin o o oL i R A S A
MO R N O AT S Pl

'y,

’

ot
.

Appendix E Sof'tware Fault Tolerance Page 97

» ". .»:} (b' Ll a

system strongly or weakly tolerant to detected unanticipated exception

‘l ‘l ‘..
“- . .

-/,'ll

- occurrences,
K*, A procedure is said to contain a design (algorithmic) fault if its UED
2;:; is non-empty. A system strongly or weakly tolerant to failure occurrences
52; caused by design faults is called design fault-tolerant.
?};' The commitment interval of a transaction is defined as the time interval
}:} between the beginning and the end of transaction execution, If there 1is a
g:ﬁ design fault in the code implementing the operation, however, the acceptance
‘\§ test may not detect the consequences of the fault (since, by the definition of
L2l design fault, the acceptance test was not designed such that the part of the
:;: exceptional domain in which its effects fall was checked by the test). Thus
:;} the acceptance test will be passed, the results of the transaction committed,
fﬁi and recovery made impossible should the consequences of the design fault
.f‘ manifest themselves later. The time between the manifestation of a design
f{{. fault and the detection of its consequences is called the latency interval.
Eiﬁi Automatic (or programmed) backward error recovery methods are adequate
jfﬁ; if the latency intervals of all transactions are contained within the respec-
{] tive commitment intervals of the transactions. However, these methods cannot
fj;j cope with situations where the latency intervals of transactions may stretch
:Ei over several successive transaction executions.
";;' The prevention of such situations is tied in with the problem of the
é;a adequate specification of acceptance tests such that the UED of an operation
xifj is empty, that is, so that there are no design faults (undetected exceptional
EE% occurences) in a system. This problem is a current focus of research at New-
o, castle upon Tyne.
5
$‘2§: E.T RIRECTIONS IN RECENT RESEARCH
w5 Work by the group at the University of Newcastle upon Tyne continues in
M E the area of software fault tolerance ([Rand81]). Recent work there includes
\ investigations into the design of reliable remote procedure call mechanisms
i ([Shrive2]).
E:;E Prcblems in the implementation of recovery blocks include the selection
i;; of checkpoint intervals and of appropriate points at which previously check-

o pointed information may be discarded ([Russ80]). Since the discarding of
-;}: checkpoint information is equivalent to commitment to the results of the chec-

SR ESE ALK SO AL ASA LA E N O LN S LA g G A i S e e oy Aot S, e e e S Jioe du/h It 4ot v DA A A ¢

Page 98 Software Fault Tolerance Appendix E 4f4&;:
kpointed block, this issue is of no small importance. Another problem is the ﬂ;ﬂ;$§7
design of acceptance tests for the recovery blocks, which is discussed in ;'A 3
detail in [Ande81]. It is this problem which, as has been noted above in the ;l;iLQ
discussion of [Cris82], leads to inadequacies of automatic backwards-recovery ;Q,E
systems when design faults may manifest their presence after the commitment of Ve ?f
the results of the affected block. The proper design of acceptance tests is a ::;;:fﬁ
current thrust of research at Newcastle upon Tyne. éifiifi

For distributed systems, the problem of coordination of the separate fi.é'n
processes in a recoverable action may be solved by the two-phase commit 7iff:§:
protocol of Gray ([Ande81]). Here, a separate "coordinator™ process ensures ;?3££;£
that, if any process requests backward recovery, all processes are instructed ;ﬁf;iiﬁ
to restore to their recovery points. This is an extension of the "conver- e f%:
sation" mechanism described above. Work has started at Newcastle upon Tyne on 7:ii”£:s
a search for communication protocols for recovery which can identify recovery E}i*}:ii

lines without the necessity for a central coordinator, or the exchange of
large amounts of control information on a (possibly unsafe) message-passing
system ([Ande81]).

'
el
e e
A A,

A possible strategy which should be considered in adding algorithmic-
failure recovery mechanisms to PRONET is the notion of "overlaying®™ a back-up
process on the address space of its failed predecessor. This scheme would
have the additional advantage of allowing transparent replacement of exdisting
permanent network processes. O0ld software could be replaced at an appropriate
time (say, at a checkpoint) by overlaying a new version on the address space
of the old software, without having to halt the entire program. A similar
scheme 1is discussed in [Ande81], where it is suggested that older versions be

retained as the back-up algorithms.

,i Allchin and McKendry ([Allce82]) have proposed that recent work in the
Q database field on "semantic correctness™ (as opposed to strict enforcement of
L? correctness criteria, such as serializability) may be extended to the
;i decentralized global operating system for a local area network which is
?E currently under development at Georgia Tech. 1In their model, support for data
hY

. 2

management is constructed using abstract data types -- instances of which are

"objects" -~ together with nested actions., They argue that serializability is

-y vy v v

e e,
e
a-. .

often too strong a correctness criterion for the abstract behavior of an

5

object, and that it is sometimes necessary or desirable -~ especially for

e B &
o %"
.

L
10707 "%

' T N -

e e e e e e

Appendix E Software Fault Tolerance

efficiency considerations -- that the implementation of an object violate
strict serializability. Synchronization and recovery for objects are thus
user-defined, since the writer of an object has semantic knowledge of the
object which would be extremely difficult, if not impossible, for the system
to determine.

Similar considerations may be applied to the design of algorithmic fault
tolerance features in PRONET. In particular, the use of knowledge of the
writer of a recovery block about the objects on which the block is based may
lead to 1increases in efficiency in the use of the recovery cache. Another
possible line of investigation would be the application of Allchin's object-
based recovery model to backwards recovery. Investigations into automatic
backwards-recovery schemes thus far have been concerned with action-based
recovery, that is, the recovery information has been associated with the
operations rather than with the objects. Only very recently has work appeared
which is concerned (even peripherally) with recovery in object-oriented
languages or systems ([Cox83]).

Considerable further study of the reliability 4issue is required.
Programming techniques must be developed to effectively utilize the failure
handling features, These techniques may influence future refinements of the

process description language, since they are likely to be rather complex.

0
PR N A

i‘.l

o b St 0y 8, o
L] ’

AL

< R
l"“{

“ r "
X

.,

~

FUPURNI WS
- S'."f 't‘..l'. A

~ ST,
VRN

\ ‘ .' » s
’ LAAAAAAA

Laal

..............

[Al1c82]

[A11c83]

[Ande81]

[Cox83]
[Cris82]

[Koh181]

[Macc82]

[Mer1781]

[Rand75]

[Rand78]

[Rand79]

[Rand81]

[Russ80]

[(Shri78]

[Shri79]

[Shri81]

References

REFERENCES

Allchin, James E., and Martin S. McKendry, "Object-Based Synch-
ronization and Recovery," Technical Report GIT-1CS-82/15, September
1982.

Allchin, James E., and Martin S. McKendry, "Facilities for Support-
ing Atomicity in Operating Systems," Technical Report GIT-ICS-83/1,
January 1983.

Anderson, T., and P. A. Lee, Fault ITolerance: Principles and
Practice, (Englewood Cliffs, N.J.: Prentice-Hall International),
1981 L]

Cox, Brad J., "The Object Oriented Pre-Compiler™, ACM SIGPLAN
Notices 18, 1 (January 1983), 15-22,

Cristian, Flaviu, "Exception Handling and Software Fault ‘olerance,"
IEEE Irans. Comput. C-31, 6 (June 1982), 531-540.

Kohler, Walter H., "A Survey of Techniques for Synchronization and

Recovery in Decentralized Computer Systems," ACM Comput. Surveys 13,
2 (June 1981), 149-183.

Maccabe, Arthur B., "Language Features for Fully Distributed Proces-
sing Systems," Technical Report GIT-1CS-82/12, September 1982.

Merlin, Philip M., and Brian Randell, "State Restoration in
Distributed Systems," Digest of Papers, 8th Int. Symp. Fault-
Jolerant Computing 1978, 129-134.

Randell, B., "System Structure for Software Fault Tolerance," Proc.
Ant. Conf. on Reliable Software 1975, 437-449.

Randell, B., P. A. Lee, and P. C. Treleaven, "Reliability Issues in

Computing System Design," ACM Comput. Surveys 10, 2 (June 1978),
123-166.

Randell, B., "Software Fault Tolerance," Euro-IFIP 79 (P.A. Samet,
ed.)’ 721-72“.

Randell, B., "Reliability and Integrity of Distributed Computing
Systems," Ihe Coordinated Programme of BResearch Jin Distributed

Computing Systems: Annual Report, Sept. 80 - Sept. 81, Science
Research Council, 1981, 160-165.

Russell, David L., "State Restoration in Systems of Communicating
Processes," IEEE Irans. Software Eng. SE=6, 2 (March 1980), 183-194.

Shrivastava, Santosh Kumar, and Jean-Pierre Banatre, "Rellable
Resource Allocation Between Unreliable Processes," JIEEE Irans.
Software Eng. SE=U4, 3 (May 1978), 230-241.

Shrivastava, Santosh Kumar, "Concurrent Pascal with Backward Error

Recovery," Software - Practice and Experience 9 (Dec. 1979), 1001~
1033.

Shrivastava, Santosh Kumar, "Structuring Distributed Systems for

Recoverability and Crash Resistance,™ IEEE Trans. Software Eng. SE-

SO

o
L .i:':‘
! N h

S
Al A by

»

.
()
Lo ¥

.

[

-

A G Gy

>

Ll

,k} I"s.

,

.l ‘l Fl 'l
N
PP

0
8

2.
N
[N

REND
[
]
(I
.

e el

P
P}
".‘- B

WA
red

L

- P
S5 455
¢ "5.. Dy -"

s & # a 3 4 a

Y,

References Page 101 .
[Shri82] Shrivastava, Santosh Kumar, and F. Panzieri, "The Design of a ff;ﬁ%
Reliable Remote Procedure Call Mechanism," IEEE Irans. Comput. C-31, R
T (July 1982), 692-706. ot
[Svob79] Svobodova, Liba, "Reliability Issues in Distributed Information o
Processing Systems", Digest of Papers, 9th Int. Symp. Fault-Tolerant .jZ--_’.}'Z'
Computing 1979, 9-16. . L
[Verh78] Verhofstad, J. S. M., "Recovery Techniques for Database Systems," j;fj
ACM Comput. Surveys 10, 2 (June 1978), 167-196. .—

A R S Nt &
- e N “ ~.
'-‘-“ '.:.".. < -‘-4 =",
e Ve e

RN

My

R Appendix F Queueing Network Models Page 103
Lf::

e

S APPENDIX F

E{y, A SURVEY OF QUEUEING NETWORK MODELS OF COMPUTING SYSTEMS

2%

2

s John A, Miller

: F.1 INTRODUCTION

Qii: In the design and analysis of computing systems, because of their
21?~ ever increasing complexity, it has become necessary to construct models of
- these systems. The use of mathematical or other suitably precise models,
\e\é enables one to abstract the essential features of systems for detailed study
EEE of their behavior, interactions, and effects on total system functionality and
ﬁf{ performance. This process of abstraction and quantification has the advantage
o of enhancing the understanding of systems. For example, in attempting to
;i understand a particular operating system, one might find the high level

DN
[

approach of a model more palatable than trying to ascertain the behavior of

y

:i¥ the system from the knowledge of which bits get set when. An even more
v important advantage of modeling is that it facilitates the use optimization in
{\;. designing or improving systems.
E:EE For a quel to be of use in studying a complex computing system, it must
inj: come to grips with the following complications: The demands placed upon the
b system are of a probabilistic nature, various activities are occuring at
;:g various places in the system, and finally these activities may be interdepen-
i:% dent and occur concurrently. Queueing network models, first introduced by R.
i;ﬂ R. P. Jackson [Jack54], are a useful tool in dealing with these com-
::. plexities. Basically, these models represent the system as a network of nodes
:i: and arcs. Each node represents a device in the system and is composed of a
ng set of servers that are feed by a queue. Each arc represents a possible flow
f;i? path for jobs or work requests. From a suitable specification of the model (a
42 set of equations), the model can be solved to determine the performance
::IE characteristics of the system, e.g., throughput, response times, device
;IE;.; utilizations, and queue lengths.
:;) The purpose of this paper is to survey queueing network models for com=-
W puting systems. The paper is divided into two parts. In the first part we
EES will consider the mathematics of queueing networks, Specifically, we will
o
st

SO AR PORG PTG A Pt
‘a?e?Jje_3:¢?¢?J:a:¢::t¢; DO
AN R AT Y RS S '.»%.-\'
LYK RN AT RO D S A Js;$‘ A

- .

(_-"n,
/“{(".‘.'.’

’l{.' [4
220,
AN AR
5 % % e

&

T T T T R T e e R R R L e A e AT e e am am e 7o)
i -
i. ; Page 104 Queueing Network Models Appendix F "f;:
s ‘i
f%t? consider the elementary theory, various solution techniques, and software pac- ;gfi;:
:33' kages used to solve queueing networks., In the second part of this paper we ’tﬁ:i*
- will consider some specific modeling studies. This will be done from an "; .
;S evolutionary point of view (from simple uniprocessor systems to complex :?fﬁj
{iif distributed processing systems). A commment on notation is in order at this E;iéf%
2N point - the symbols E and TT will be used to denote the summation and product ;2@{7}
operators respectively. 2 .?
e T
o F.2 QUEUEING NETHORKS RS
ﬁa: F.2.1 Basic Theory 2]
N Before considering some of the more complex techniques used to ;ilhj
o solve queueing network models, let us first examine some of the elementary
;ais theory. We first consider open Jaoskson networks [Heym82]. The solution to
Zgi such networks 1is particularly simple since the distributions are Markovian

(probabilities are dependent only on the current state of the system, not on
its history or elapsed time). Specifically, the model makes the following
S assumptions.

C:;i 1) [Structure] The network consists of N interconnected service centers. e
(“"‘ 2) [Arrivals] Exogenous (from outside) customers arrive at service center i o
3. 7al
S according to a Poisson process (exponential interarrival) with rate ¥y, ;.{f
':ff 3) [Routing] After receiving service at center i, a customer leaves the fff}
i i
oS network with probability r,, or goes instantaneously to service center j with R
vln probability ryj (where node 0 can be thought of as a special source/sink ——
P node). The routing probabilities ry, form a Markov chain with transition o
hhA (routing) matrix R = (ryy)- RN
o 4) [Service Center] Service center i consists of an infinite queue that feeds N
:i eq identical servers. The service discipline is first-come-first-served igf'
,; (FCFS), and the service times are independent identically distributed ~;-
'fﬁj exponential random variables with mean 1/uj- f:'
g We will want to obtain solutions to these types of queueing network i
~ "
i;: models, that will specify the probability of the system being in a certain V
::ij state. Here the state of the system will be a vector that specifies the num- :;
Ikti ber of customers at each service center, 8 = (81,32,...,8y)¢ From this ;2:1}
o information one can then calculate other characteristics of the system, e.g., RN
};}; waiting times, response times, and throughput. e
O h—.
- First we need an expression for the total asymptotic arrivals at each
\:_.
L R
°:‘-':
SN
o ;?5!5
. “m

T : -
- J.ls'_\'.\'c\':\g -f.\a

e s T oy N L

Appendix F Queueing Network Models Page 105

queue. This is given by the traffic equations, where arrivals at queue i are
given by

8 = y1 + Ej=1..Nq3r34 for 1 = 1..N.

This is a set of N equations in N unknowns, a = (a1,...,ay)® ¥Which can be
shown to have the following solution

a = y(I - R)=1,

With this result in hand we are ready to find the probability that the
system is in state s, P(s,t). Specifically, we are interested in the steady
state solution where the system is in statistical equilibrium p(s) =
lith(s,t). Note, transient state solutions are also useful, but are
generally harder to obtain.

To obtain a steady state solution, we apply the principle of conserva-
tion of flow to get a set of flow balance equations, These equations can be
complex in general, but are not difficult fo:r a single queue such as an M/M/¢
queue. An M/M/c queue has an effective service rate of

Uy = { su if s <e
cu -

where s 1s the number of customers in the system. The flow balance equations
specify that the rate at which customers leave state s, (y+ug)P(3), must equal

the rate at which customers enter state s, yp(s-1) + Uy, 1p(s+1). Hence -the

flow balance equations are
yp(0) = up(1)
(Y+U3)p(s) = yp(s=1) + uge1p(s+1) 8 > 0

which can be solved recursively to obtain after normalization
p(s) = E p(0)(y/u)s/st ifts<e

{ p(0)(y/u)8/cles=c -
where p(0) = [Bs=o..c-1(y/“)8/3' + (y/u)e/et(1-y/cu)l-1.
Getting back to the original problem, thanks to the J. R. Jackson

theorem [Jack57], we can decompose the network into N M/M/cq queues. Thus the
solution is formed from the product of independent component probabilities,

. .

by P st
*, .i " ‘.,.

»

-w
Q.

'i“q'\v"b
XA

“

E!j
LAY

Page 106 Queueing Network Models Appendix F

p(s) = TTi=1..NP1i(s1)
where p,(g4) = { p1(0) (a1/ug)®i/34) if 83 < of

{ Py(0)(aj/uy)®i/eype 8i=ct -

and p;i(0) 1s the analogous normalization sum. Notice that the key to the
tractability of this solution is the fact that a product form solution could

be found.

Closed Jackson networks are also a useful type of model. The assump-
tions for closed networks are the same as those for open networks, except that
there are a fixed number of customers (Jobs) that circulate through the
network (i.e., there are no exogenous arrivals or departures). Using the
Jackson-Gordon-Newell theorem [Jack63, Gord67], we can obtain a product form

solution similar to the one obtained for open networks,

Pls) = cTTi=1, . NP1(541)
where Py(sy) = { (aifui)si/sil if 834 < ey

{ (ay/ug)81/c 50,8101 -
and C is the normalization constant.

These two types of queueing network models form the basis for the
elementary theory of queueing networks. When their assumptions reasonably fit
the real-world problem being analyzed, they provide easily obtained exact
solutions. However, the real-world is usually not so cooperative, so that
solution techniques to more general models will be needed.

F.2.2 Solution Teqhnigues

When faced with complex prcblems, it is advantageous to have a large
arsenal with which to attack the problems. Below is an overview of some of
the more useful techniques used to solve queueing networks. They are
presented in the rough order in which one should try to use them, i.e., if a
problem yields to exact analysis use it or try the next approach, etc.

F.2.2.1 Exaoct Analysis
Here we consider a general solution technique that yields exact closed-

form solutions. Models that have such solutions are called BCMP networks
[Bask75], and are generalizations of Jackson networks. For a model to be a
BCMP network it must satisfy the following set of assumptions.

1) [Structure] The network consists of N service centers and K classes of

e A

RS SO ARSENE Y S PR
" / " * .t . . . e
L4 .l ’,

v 8 e s .. .
e
% I &N (I T 4. .
o, I R A A R LR
A 1. PR B PRI £
h e . .

L]
.l 'l

HEA X
L]
X
e

A M S AN A AL R AN A TS LA S R SN A ahi s g ANl o L ML A s R en At - i e S S gt e et Db s fot]
. - =, R - " S -

Appendix F Queueing Network Models Page 107

customers. ITZfﬁf
2) [Arrivals] The types of arrivals determine the type of network. An open .
network has exogenous arrivals, a closed network does not, and a mixed network
is open for some classes and closed for others. There are two basic types of
exogenous processes. In the first, the arrival rate to the network is Poisson
with mean dependent on the total number of customers, y'(M(s)), where M(s) is
the number of customers in the network. In this case, the exogenous arrival
rate at which class k customers arrive at center 1 is Yik = y'Qik where the
Qik's are fixed probabilities. In the second, the arrival rate to subchain h
(see below) 1is Poisson with mean y'(M(slE,), in which case Yik = y'Qix for
each subchain.

3) [Routing] A customer of class k who completes service at center i will next

require service at center j in class 1 with probability rij j1° The routing
probabilities r;,), form a Markov chain with transition (routing) matrix R =
(”ik,Jl)' The Markov chain is assumed to be decomposable into m subchains,
where E, | | E, denote the sets of states of these subchains (a state in this
context refers the customer (center i, class k)).

4) [Service Center] There are four types of service centers allowed in BCMP

networks. A type 1 service center consists of an infinite queue feeding cj
identical servers., The service discipline is first-come-first-served (FCFS),

and all customers have the same exponential service time distribution. The j;.~
service rate can be state dependent, u(M(ai)) where M(s;) is the number of

customers at the service center. A type 2 service center consists of an iy
infinite queue feeding a single server. The service discipline is processor ::}“‘;
sharing (PS), and each class of customers may have a distinct service time
distribution, Note PS is the limiting case of round robin (RR) where the time

)
Pt
L
o'

’
R

quantum approaches zero. A type 3 service center has no queue and ¢y S€rvers,

:ﬂ: so that at any time the center can hold at most ¢, customers., Each class of
ﬁéﬂ customers may have a distinct service time distribtion. A type 4§ service
YA

p}?} center consists of an infinite queue feeding a single server. The service

19

.
NENERELY S

displine is preemptive-resume last-come-first-served (LCFS), and each class of
customers may have a distinct service time distribution. Note 1in LCFS an

arriving jJob preempts the server and get service until it completes (preempted
job resumes) or is itself preempted [Klei76].

In types 2, 3, and 4 the service time distributions are arbitrary, but
must have rational Laplace transforms. Under this slight restriction, one ..

N AL A digin e Sat S ThAhl S 0 S A geat aui It N S A -F

Page 108 Queueing Network Models Appendix F

able to represent the service time distributions as a sequence of

exponentially distributed stages using the method of stages [BaskT75].

To solve BCMP networks, one can follow a procedure similar to the one

given for Jackson networks. Here the state of the system is given by s =

(s1,...,8y) where each 8 is now a vector that completely specifies the status

A of service center i, 8; = (sq,...,85y) where nj is the number of customers at
2 center i and 8; is the class of the jth customer in line. The traffic
e

.i:: equations for each subchain Eh are
"y
AN ejk = ik + EjleEpejirjl,ik for (i,k)eEp
L or multiplying through by y' to get a more familar form
E&: ajk = Yik + EjleEhaJl’jl,ik for (i,k)eEp*
:ti These equations are a direct generalization of the ones given for Jackson
U networks and can be solved similarly.
l:f: We are now in a position to find the steady state solution, using what
" are called the (local) independent balance equations, which equate the rate of
,ii{ flow into a state by a customer entering a stage of service to the flow out of
{x‘ that state due to a customer leaving that stage of service. Note, 1if a
’::: customer 1s queued, his stage will correspond to the stage of service he will
,:j be in when he next gets service., Since the global balance equations are the
E:? sum of the independent balance equations, independent balance is a sufficient
A condition for global balance. The solutions to BCMP networks are specified by
:}: the Baskett-Chandy-Muntz-Palacios theorem. The steady state probabilities for
:E: the case of type 1 arrivals and type 1 service centers are given by
LS5
i p(8) = CA(8)TT,_, ypy(sy)
e where pj(sy) = (1/u1)n1TTJ=1,,n1eisJ
i d(®) =TT 0. .u(s)-17" (K)
x}i and C is the normalizing constant. The rest of the cases are similar but
:2; somewhat messy products (see [Bask75] for details).
ii This solution is similar to the solutions obtained for Jackson networks.
i}: It is again a product form solution, implying that specific solutions can
.€:: easily be computed. In fact, BCMP networks define a very general class of
'}} queueing network models that yield exact closed-form solutions. These models
;;5 are flexible enough to be useful in modeling real computing systems. For
N
3
;—.é

Appendix F Queueing Network Models Page 109

example, type 1 service centers (FCFS) are good models for secondary storage
I/0 devices. Type 2 and 4 service centers (PS and LCFS) are good models for
processors since LCFS is an efficient preemptive scheduling algorithm and PS
is limiting round robin (RR). And type 3 service centers (no queueing) are
good models for terminals and routing delays in computer networks. If
however, we violate one of the basic assumptions we may not be able to find an

exact closed-form solution.

F.2.2.2 Operational Analysis

If the purpose of the analysis is to study an existing system for say
tuning or upgrading, and statistics can be gathered by monitoring the systen,
then operational analysis is a useful and easy to understand tool [Denn78].
It replaces the usual assumptions of stationary stochastic processes used in
classical queueing theory, with simple operational (measurable) assumptions
that can be verified by monitoring the running system. The basic assumptions
are the following.
1) [Measurability] All quantities of interest are precisely measurable.
2) [Flow Balance] During a reasonably long observation period, the number of
arrivals at each service center approximately equals the number of departures
(completions) from that service center.
3) [Homogeneity] The routing of Jjobs must be independent of local queue
lengths, and the mean time between service completions at a given device must
not depend on the queue lengths of other devices.

To use this approach one measures certain basic quantities directly from
the system, typically the following.

T = length of observation period

number of arrivals in time T

total time the system is busy in time T
number of completions in time T

QW >
wown

These quantities are then used to compute other quantities called derived
quantities, that will hopefully give a reasonable characterization of the
average behavior of the system. Some of the more important derived quantities
are the following.

y = A/T = arrival rate

X = C/T = output rate

U = B/T = system utilization
S = B/C = mean service time

Further there are operational laws and theorems that can be shown to be true

PRI I TN N s
:‘”-:‘-.:f. “x".' ~ .\' -t eta ‘-._‘-. D
Y RS S
- A - - .-~b‘-."-.'n
L A A A A P

Page 110 Queueing Network Models Appendix F

when the system satisfies the basic assumptions. Examples of these are the
following,

A
U

C : job flow balance

yS : utilization limit theorem

These numbers can then be used as a guide for tuning or upgrading the systenm,
and are especially useful in identifying bottlenecks., It turns out that the
equations derived from the operational approach agree with their traditional
Markovian counterparts. This helps explain the robustness of stochastic
queueing network models (they seem to have good accuracy even when their

assumptions are in doubt).

The advantages of this approach are that it can be applied to any system
that satisfies simple assumptions, calculations envolve simple formulas, and
it is easy for practitioners (systems analysts) to apply (one does not need to
learn queueing theory). The disadvantages are that it is only applicable to
existing systems that have good monitoring capabilities, and only average
behaviors are considered (part of the beauty of classical queueing theory is
that it predicts non-intuitive results due to randomness).

F.2.2.3 Numerical Analysis

When the state of the system can be fully specified by the number and
types of customers at the various service centers, then a steady state
solutions may be obtained by solving the flow balance equations. [Note to
fully specify the state of a GI/G/1 queue time must be included in the state
description.] 1In general, these equations constitute an infinite set of
linear equations. Thus we must exploit a recursiveness in these equations to
obtain a closed-form solution, but this cannot always be done. dowever, in
many cases such as closed networks, the numbers of possible states is finite,
and hence the balance equations form a finite set of linear equations. We may
therefore apply the techniques of linear algebra to obtain a numerical
solution.

Because these equations are usually very sparse, an iterative solution
technique is more efficient than the more common elimination based techniques.
A simple procedure that may be used is called Guass-Seidel iteration [Coop81].
Suppose one has the following set of linear equations

Ax = b,

v
o .

]
AR

’ .
M AP

L I
v e,
»
.

P S
AR
I'/"-

1
)
W
ALl s g

L)

p
2f

Ill")

Vs
.
2t '

SCelesld

208 vty

.
U

P

"
2. et e

e« s
a-a el

RN
v

»,
.

«|

..............

Appendix F Queueing Network Models Page 111

Divide each row of A and b by a,; to get Bx = d. Letting B = I - L - U where
L and U are lower and upper triangular respectively, we have

(I-L-U)x=4d which may be rewritten
x=Lx+Ux+ d,

Starting with an intial guess x0 we may iterate using the following equation
to converge to the solution,

1 o x4 ux? 4+ d.

Note, in practice a more sophisticated version such as the method of succes-
sive overrelaxation [Coop81] is often used.

F.2.,2.4 Approximate Analysis

Because real computing systems can be quite complex, the models of them
need to be highly flexible. Typically, when a system is thought to be too
complex to be solved by exact closed form or numerical methods, simulation is
resorted to. This however need not be the case. The use of approximate solu-
tion techniques provides a way to obtain answers of reasonable accuracy, to
very general queueing network models. The word reasonable is used rather
loosely; one of the difficulties with approximation techniques is estimating
their error bounds,

Before presenting these techniques, 1let us first consider some com-
plications that make the previous techniques intractable, but have been solved
by approximation techniques [ChanT78].

1) [Distributions and Disoiplines] If the arrival distribution, service
distribution, and queueing discipline do not satisfy the assumptions for BCMP
networks, then it is likely that an approximation technique will be needed. A
good example of this is a network with priority disciplines,

2) [Multiple Resource Holding] When a customer (job) needs more then one
resource simultaneously to obtain service, an approximation will be needed.
An example of this is a passive resource, a resource that does not have a ser-
vice time associated with it, but limits the population of jobs that may
utilize other devices.

3) [Blooking] In networks where finiteness of the queues is critical, such as

a packet switching network, a device (server) may be blocked, i.e., prevented

from serving Jobs 1in its queue because a queue elsewhere in the network is

full and cannot accept any more jobs. Again an approximation technique will

Page 112 Queueing Network Models Appendix F

be needed.

4) [Scheduler] When the delays due to waiting for a scheduler to be activated
become significant, approximations will be necessary. Schedulers are a
particular complication because once activated they serve many jobs in a
relatively short time, so that it is hard to model the service ¢time of a
scheduler.

5) [Parallelism] If a system has tasks whose subtasks can be run in parallel,
then approximation is again called for. An example of this is CPU:I/0 over=-
lapped processing, where the CPU ana an I/0 device service a job in parallel.
6) [Routing] If the probability that a job completing service at device i goes
to device j 1s not a constant ry, put depends on the state of the system,
then an approximation will usually be needed. An important example of a type
of dynamic routing is load balancing (e.g., in say a pooled computer system
the scheduler would send a newly arriving job to the computer with the least
expected delay).

We will now look at two types of approximations that have been used suc-
cessfully, decomposition and diffusion. Decomposition approximations solve
queueing network problems by breaking the network into pieces, solving these
pieces separately, and finally aggregating these subsolutions to obtain a
solution to the whole model [Chan78]. The justification for the accuracy of
this approach is first, its application to networks with product form
solutions yields exact results, and second, if one partitions the network dp
into loosely coupled subnetworks then the approximation will 1likely be good
since the interaction effects between the subnetworks will be minimized. The
simplest decomposition approach is called the flow equaivalent method. Here
the strategy 1s to partition the network into loosely coupled subnetworks,
replace each subnetwork with a flow equivalent composite queue, solve each
subnetwork to determine the behavior of its associated composite queue, and
finally solve the new aggregate network composed of the composite queues.
Note that the partitioning may need to be applied recursively to some sub-
networks to achieve a tractable solution (i.e., continue breaking up the
network into smaller pieces until the pieces are small enough to be solved by

some other technique, ideally exact analysis).

Diffusion approximations can be used to obtain approximate solutions to
queues with general arrival and service time distributions (e.g., a GI/G/1
queue) [Klei76, Chan78]. The time dependent behavior of a queue is specified

A ARG ras st w Al Al g s S C . B A DA A AN T Y B St S AL aNaL g

.............

Appendix F Queueing Network Models Page 113 ~4l4

by p(t,n;ng)» the probability that at time t there are n customers in the

queue given that there were n, oustomers at time t = 0. p(t,n;ng) may be
found by solving a set of differential equations (one for each value of n).

However, for general distributions this can't be done; hence an approximation
is needed. The idea is to replace the discrete variable n by the continuous

variable x > 0, where the correspondence between n and x is n = [x].

Making the substitution of x for n and the density function f(t,x;xo)
for p(t,n;no) and taking the Taylor's expansion to second order of the
differential equations, one obtains a partial differential equation, the
diffusion equation

ft(t,x;xo) = =cfy(t,x;xg9) + .SDfox(t,x;xo) x,t >0
where ¢ and D are functions of the arrival and service distributions' means
and variances [Heym82]. This equation models Brownian motion where a group of
particles is released at xp and diffuses outward because of collisions, sub-
Ject to the constraint of a reflecting boundary at x = 0.

To obtain a solution to this equation we will use the distribution fune-

tion, F(t,Xx;X;) (integral wrt x of f(t,x;xy)), rather than the density func-
tion. It can be shown that F also satisfies the diffusion equation

Fi(t,x;xg) = =cFy(t,x;x9) + .SDZFxx(t,x;xo)
and has the following initial and boundary conditions

F(0,x;x

) 0 if x < x

=17 ! 0
F(t,0,x3) =0 t >o0.

The solution is given by [Heym82] where F(t,x;xp) €quals
PHI{(x'xooct)/Dt's} - exp(2cx/D2)PHI{(-x-xo.et)/Dt-5}

where PHI is the normal distribution function. Finally, the steady state
solution 1is found by taking the following limit

F(x) = 1imF(x,t;xg) = 1 - exp(2cx/D?)
where ¢ < 0. Under heavy traffic conditions this approximation has been shown
to be good by both empirical evidence and a theorem due to Iglehart and Whitt.

In using the diffusion approximation for a network of queues, one

generally assumes a product form solution and analyzes each queue 1indepen-

e S0 Lt

Page 114 Queueing Network Models Appendix F

dently [Chan78)]. The diffusion approximation can also be useful in conjunc-
tion with the flow equivalent method when individual queues have general
arrival and service distributions. Diffusion approximations are also being
applied directly to special networks. For example, Foschini uses the
diffusion approximation to solve routing problems for a system with parallel
queues [FosecT77]. .

F.2.2.5 Simulation

Finally, if a model does not yield to any of the previous techniques,
then one can simulate the system to get sample solutions which can be
statistically analyzed to determine the characteristies of the system.
However, one should not go about simulation in a haphazard manner. Such
simulations can provide unreliable results. For queueing network models,
regenerative simulations have been shown to give accurate results [ChanT78,
Igle78, Saue79al). In this method confidence intervals for say mean response
time are periodically estimated, and a sequencial stopping rule is applied to
determine the run 1length (these problems are difficult for arbitrary
simulations). Simulations are also useful in conjunction with analytic tech-
niques (hybrid approach). For example, when using the decomposition (also
called hierarchical) approach, it may be computationally prudent to obtain
numerical solutions to the submodels, and then use simulation for the
aggregate model, Simulation is somewhat analogous to the goto statement, it
is very powerful, but should only be used in well thought out ways.

F.2.3 Queueing Network Packages

To make queueing network modeling more convenient, packages have been

LA

‘..‘A

»
$
i

A
-

Ly

developed to solve these models [Saue79b]. Generally these packages take as

7
(l

‘
.

Itd

input a specification of the queueing network (via an interactive dialogue or

Ll

a special purpose language), formulate the problem mathematically, and solve

the equations using the techniques described in this paper. Let us now

consider some of the major packages that have been developed (note, many of

e

these packages are available either commercially or otherwise).

:3
{21

The first major package to be completed was RQA by Wallace and Rosenberg

"l :l N)
.
oS

in 1966. RQA solves queueing networks with finite state spaces by formulating

A
1 a

. a0
LK
.

:3.. the linear (global) balance equations, and solving them by numerical analysis.
;i;: The use of this approach has two principle weaknesses. First, there is a
ng 1imit to the number of states that a system can have (a few thousand states).
N
N

o

'.n
3 '_.

J""“'.'-“rv-yv.">"‘.'-.".".ﬁ"ihv.."-|"_ﬂ';"."_‘.‘T'h‘-“.._“.W}-:‘V‘T-..W'T.. e I ECR AR Al A Sc i e i e A Boe Mo S BB i)
DI N A T R LAt Pl s B e P S S

Appendix F Queueing Network Models Page 115

Second, for systems with a large number of states RQA can be intolerably slow.

In 1973, ASQ was completed by Keller. ASQ solves queueing networks with

‘”;i

product form solutions using exact analysis, Later ASQ was extended to the
hierarchical solution of networks, and was eventually renamed CADS., The chief

limitation here is that the networks must have product form solutions.,

)
i
!

Foster and McGehearty completed in 1974 a special purpose language QAL e
and implemented a simulation solution program QSIM. QAL provided several f{ﬁfi’

Vs
S
P PRI o

extensions to the networks of RQA and ASQ, such as allowing passive resources,
The primary weaknesses of QAL are its lack of non-simulation solution
implementations, and its lack of support for representing distinet Jjob clas-

ses.

In 1975, Sauer completed APPLOMB, which solved a general class of queue-
ing networks using regenerative simulation. During this same year QNETY4 was
completed by Reiser. QNET4 sovled product form networks with multiple (local)
job classes using exact analysis. In 1978, these two packages were combined
to form RESQ, which provides a fairly comprehensive solution capability and a

good user interface.

BEST/1 was completed by IBM in 1977. BEST/1 was specifically designed
to solve capacity planning problems in computer systems. It solves slight
variants of product form networks using exact analysis in conjunction with

special approximations (the details are proprietary).

The final package we will consider is QSOLVE, which was completed by
Levy in 1977. QSOLVE uses an approach similar to RQA in that it uses numerical
analysis. However, it is oriented toward networks similar to, but violating
product form (e,g., 1t allows more general job classes and queueing

disciplines).

F.3 MODELS

Now that we have a feel for what queueing networks are and how
they are solved, we turn to the modeling process, This process which is more of
an art than a science, involves a careful examination of the system (real or
hypothetical) and abstracting out the essential features of the system

relevent to the aspect of performance being considered. Modeling studies may

focds on the total system or some subsystem such as the operating system, the

database system, or the communication subsystem. In modeling general comput-

if Page 116 Queueing Network Models Appendix F
4

ing systems, two approaches have been successfully used, queueing networks and

simulation. The disadvantage of simulations are their high cost, both com-
putational and developmental, and their potential unreliability resulting from
programming bugs and the difficulty of applying rigorous statistical analysis
to their outputs [KobaT78]. For all but highly detailed models, queueing

networks otfer a good alternative. The reason they have not been used that

much is that many of the advances in solving these models has come about in
the last few years, and as of yet not enough experience has been gained in

- e
o their use. S

An ideal scenario for the use of modeling is the following [Saue81]: 1In ;—f{:

the early design phases use simple queueing network models to reject

‘. infeasible designs and zuide design improvements. As the design nears
‘ finalization, it should be represented by a detailed queueing network model.
At this point, if there is sufficient time and money, a detailed simulation
may be helpful. It can capture some of the details ignored in the queueing
network model, and if they agree it provides a partial validation of the
queueing network model. Note, a nice feature of this approach is that if
everything goes right, only one costly simulation will be necessary. Once the
system is operational the queueing network model should be validated by com-
f? paring its performance predictions with performance measurements obtained from
:}{ the running system. If there are significant disagreements, then the results
can be used to correct the deficiencies, either in the model or the system.
Once the model is validated, it can be used to configure other installations
;}. with greater confidence, and if changes in the system are needed, it can be

» used in redesign and redevelopment.

F.3.1 Some Suageasful Models

To see how queueing network models are used, we will look at several
p modeling studies. In the rest of this section we will 1look at some models
. that have been used successfully, i.e., the models were shown to be accurate
and were found to be of use in designing, upgrading, and/or tuning computing
systems. In the next section, we will focus on the application of queueing

;}} network models to a new area of high potential, where results just recently

&;- began coming in, namely distributed processing systems.

The first succesasful application of a queueing network model to a com-

e

puting system was done by Scherr in 1967. He applied a machine repairman

OO
I.l. l“l’l_"’

..............
...........

. -‘_ l" /.

Ll ,
-~ S

KKRAY -

By

PO
a0t v e
S
)
“eh N
YAt

f
l.l l.h
o’ »

“

D .
]

7,2,
ARN

PN

(Y PRI

) “‘l.(‘f‘."‘
Tt e

"‘".{‘l.i s
RN
RISy
P S

X
A

5 Y
N
'l l‘.l. "-

i A

] ~_ ’
l.-..‘ -'.'I.'o’":‘ A -

] v10. Yo te Te
USRS B TR

“ e 8 a
. % %

‘s %t
R A 4

DN
A A
. .

s
Q.
'R

7|

.
[2 MR 2] B

.‘-"l
0

.
)

P
<+
o«
o
4
&

.
~
LAY
i
I

Appendix F Queueing Network Models Page 117

model to the Compatible Time-Sharing System (CTSS) at MIT [Grah78, Munt75].
This model can be thought of as a closed queueing network with two nodes, one

representing the central system (memory, CPU, and I/O devices), and the other
representing a collection of N terminals.,

N

terminals

|
————— >:Ill!!l; system

- —

In this model N Jobs circulate around the network; each Jjob is
permanently associated with a particular terminal. At the terminal node there
is no queueing so that a job goes directly to its associated terminal, and
remains there for the duration of its terminal service time (think time of its
user) which is modeled as an exponential random variable. At the central
system node the jJjobs queue up to obtain its services. The service time of the
central system represents the sum of the program execution time and the
unoverlapped swap time, and is also modeled as an exponential random variable.
[Note, CTSS was an early interactive system where user programs were swapped
in and out of memory, implying only one program could be in memory at a time.]
Hence there are three possible states a job can be in: 1) at its terminal,
corresponds to a user thinking, 2) in the central system queue waiting for
service, or 3) receiving service from the central system.

Clearly this is a very simple model; surely it's too simple to be an
accurate predictor of performance. Scherr compared the model's predicted mean
response time with the actual response time experienced by users.,
Surprisingly, the model was amazingly accurate. In Scherr's words, the results
were "startling®™ considering the simple model used to predict the performance
of a "highly complex hardware-software system." This high accuracy is in part
explained by the fact that the central system serves only one job at a time;
hence the model agreed well with the configuration of the real system. In

. o
. I Tt
-~ R AR

TR RIS R R SNPREA, A G W L

&

a4
v

-
. NN
‘\.‘*\

~

PR R N P S S

SN N

G . . e >-"-.-'. . ~'...-'. o \ e .'~'\~' . O ;‘- et {
AN S T T TR A W YA A A, AR TR VAL TR TR YIS AR AR YR YA AR Y, ST A b

v
L)

s s
L

F
”~

P -

L,

wr TN

Ry

.
[3

AT

LA

SRS
“ateta

)
LR
.
2]
v

XN N
ey
S

(
r

ll"d'

» n{‘.
.': s
a's"a’n

e Y
Ny
.t..l:l “y

L

3
P T As .
XTTIRL

- s

L
L]
s

Page 118 Queueing Network Models Appendix F

addition, it has been shown by theoretical results that performance measures
such as average delays and throughputs are rather insensitive to service
distributions [Koba78].

In 1972, this same model was applied by Lassettre and Scherr in the
design of IBM's Time Sharing Option (TSO) with a single partition [MuntT75].
The model's predicted mean response times were compared with measured response
times that were generated form script driven workloads. When at first the
model and the measurements did not agree, Lassettre and Scherr has enough con-
fidence in their model to claim that a system error or poor scheduling policy
was the cause. This indeed turned out to be the case; after the performance

bug was located the model gave accurate predictions [Koba78].

The next major advance in the application of queueing network models to
computing systems, came in 1971 when Moore modeled the Michigan Terminal
System (MTS) as a closed Jackson network [Koba78, Munt75]. His model
explicitly represented the major resources of the system, an IBM 360/67 with a
dual processor, 1.5 megabytes of memory, 2 paging drums, and approximately 100
terminals. He found that the model could be simplified somewhat by treating

lightly used resources as a single resource,

As specified by Jackson's results the service times for each resource
were modeled as exponential random variables whose means were estimated from
measurements of the system in operation. Moore observed that the exponential
distribution did not fit the data he collected very well; however to predict
average values (e.g., mean response time and resource utilizations) this did
not have much effect on the accuracy of the predictions. He also used this
measured data to estimate the transition probabilities (probability of going

to resource j after completing service at resource 1i).

Moore measured the system over 10 to 15 minute intervals, using the data
to estimate the model parameters specified above. He then compared the model
predictions of mean response time and resource utilizations to those obtained
from the measured data. Again good accuracy was obtained, the predicted
values were typically within 10 percent of the measured values, Considering
the complexity of the system, a large interactive computing system, these
results are very good. In addition, Moore found that the performance was very
sensitive to the load on the system, so that accurate estimation of the model

parameters was essential for accurate performance predictions.

Appendix F Queueing Network Models Page 119

Also 1in 1971, Buzen used a particular type of closed Jackson network to
analyze multiprogramming systems, He called models of this type, central ser-
ver models [Koba78]. A basic central server model consists of a CPU and

independent secondary storage and I/0 devices.

YT E R 7/ J pes—
! —emmmem .
I = . -’. '..
! e T
| | feee=>11 1] 1/0 |ommm-] e
v e — | ——— | SR
------ >l CPU |macanaa] |rmme e ANEAE
z ——— ! : [f " e
| I —— | | R
| ST Y F T o7 Y pe— | ey
= —mm—ee : e
Frcel
This closed network captures the basic behavior of a multiprogramming system. BENSE
The number of jobs that circulate through the system corresponds to the mul- gh§ii
T Ay
tiprogramming level. A typical job will progress as follows: It will receive :::;21
CPU service from which it will either be preempted or request I/0 service, 3“if£

SO, . 4

upon completion of which it will again seek CPU service. This scenario will
be repeated indefinitely. Clearly a real Jjob does not have an infinite
lifetime, but if a system has a maximum multiprogramming level and is

A
s

reasonably loaded, we can think of a completed job being replaced by a new
Jjob. Hence the abstract notion of an infinite Jjob 1is a reasonable model.
Buzen first used these models to study the throughput of batch systems
(Munt75].

Later, Buzen used a central server model for a comprehensive analysis of
the IBM Multiple Virtual Storage (MVS) operating system [Buze78]. The purpose
of this analysis was to model the resource allocation mechanisms of MVS, so
that given current or future workloads for a system, an optimal strategy for

o

upgrading and tuning could be determined. MVS allows an installation manager
Pli to classify workloads (MVS allows batch workloads, time sharing workloads, and
o transaction processing workloads), and provides mechanisms by which the
;Cj allocation of resources to workloads can be controlled. Additionally, within {ﬁ{}:l
.‘- - - -. - ‘
14 workloads there are mechanisms by which allocations to individual jobs can be
:_?j controlled.
ot
o
o
~..-.4
s

>

-y
.
»
2
.

3R ¢

e e
RPN LR PR RS \-’-'.'.'._'..‘.'.- L S S e '_-‘.'-'..-.-‘.-)-,n‘- "Vt
- o ~b(‘k e .S ATIORNRSLRAY __'\-.:_'\._\:_\'___\:_.._1\:,\‘1" N R
IR ", t Y.

......
........

¥
.
s

]

o
-
-t -
o

X0
LA I 2 Y)

l"ni"t"".“ f A

SR

' 2
LA
i]

' '.' 4.

L A N R A LA A]
LR -~ LS
S Nh _‘l .‘l N R _“ h

;'/ l" .ll
Foles

ot

MER S S

XA
L .I.

e
2

4 ’- ..
A

NN Y

PN,

-
L4

C T

ot et
Y I.’I.-l.'.
A e

LAWY XA
)

._?:,;

Page 120 Queueing Network Models Appendix F

For controlling the allocation of resource amoung workloads, MVS
provides two mechanisms, one which regulates access to memory, and the other
which regulates access to the central processor. To control the allocation of
memory, the installation manager divides it up into domains (a logical region
of memory), and assigns workloads to these domains, Since each domain has a
maximum allowed multiprogramming level, this domain mechanism regulates the
allocation of Jjobs to memory according to their job class (workload clas-
sification). The allocation of the central processor i1s controlled by the
scheduling algorithm. Scheduling amoung workloads is done using a preemptive-
resume priority discipline, where jobs of higher priority preempt jobs of
lower priority which are resumed upon completion of the higher priority job.
Thus a workload's allocation 1is controlled by assigning it an appropriate
priority level. [Note, within a single priority 1level a round-robin (or
equivalent) scheduling algorithm is used.]

Given this first level of resource allocation control, MVS also provides
for second level of control using mechanisms that allocate resources within
workloads. Here decisions are not made on the basis of Jjob classification,
but rather by the operating system monitoring the behavior of jobs. There are
two mechanisms by which this control is carried out, domain migration and
exchange swapping. Domain migration is used to control the allocation of
memory. The idea here is to associate several domains with each workload and
to set the multiprogramming level lower for each successive domain. Then when
a Jjob has consumed to many service units (weighted sum of CPU time, I/0
processing, and the memory space-time product), it is transferred to the next
domain. If the Job 1is transferred to a domain already at its target mul-
tiprogramming level, the job will be swapped out of main memory. The second
mechanism, exchange swapping, 1s also used to control the allocation of
memory. The idea here is that for all Jjobs a dynamic memory priority is
periodically computed, and when for a given domain the priority of a job in
memory falls below one waiting to be loaded into memory, an exchange swap is

generated. These mechanisms keep jobs from monopolizing main memory.

The specific system that was modeled was an IBM 370/168 Model 3 with 7
megabytes of memory and a total of 46 disks, drums, and tape drives. The
system was processing a variety of workloads, prin.iplely time sharing (TSO),
batch processing, transaction processing (IMS), and «ertain special purpose

subsystems. In developing the model, Buzen first specified the job classes;

O

aa b AL

L ..

PO A

Do
ey

(] Appendix F Queueing Network Models Page 121

three classes were used for time sharing (short, medium, and long transac-
tions), one was used to represent batch processing, and a fifth was used to
represent various system overehead processes. Each of the five job classes

was assigned a particular domain.

Next Buzen modeled the various features of MVS, especially those dealing
with resource allocation. Domain migration was used for time sharing jobs,
Intially, all such jobs would be in the first domain, and as time progressed
some would migrate to the second and third time sharing domains. Hence to
capture the steady state behavior, domain migration was modeled by assigning
the appropriate fraction of jobs to the three levels. Interactive swapping
(whenever an interactive job is waiting for terminal input and another
interactive job is waiting to be loaded into memory, a swap is generated) was
modeied by assuming that certain I/0 devices are allocated to swapping and
setting their mean service time to the average swapping time for that
T particular device. For the system that Buzen modeled both drums and slower
3 disks were used for swapping, the drums being used until they are full.

;ﬁ: Demand paging is similarly modeled by setting the mean service time to the

average paging time for the particular devices used. Note, page reads and

writes were treated differently; since a job must wait for a page to be read,

this activity is considered to be part of the job's demand for I/0 services,

whereas page writes are considered to be part of the system overhead. Central

processor scheduling which used a preemptive-resume priority discipline was

modeled using certain proprietary approximations (priority scheduling violates

product form conditions)., Finally, exchange swapping was found to be a neg-

ligible factor (not used freaquently), and was therefore not included in the

model,

The complete queueing network model was formed by connecting these sub-

models together, The result was a central server model which was a

generalization of the one shown previously. Buzen used the queueing network
package BEST/1 to analyze this model. BEST/1 is specifically designed to
analyze central server models of this form, and allows the following features

to be mcdeled.

:i? 1) [Job Classes] Multiple job classes can be represented where each class has

its own service time requirements at each device. Job classes can be

either open or closed.

P
AR

2) [(Domains] Multiple domains can be represented where each domain has its own

¢
"-.%

AR T TXE
oA NS

Page 122 Queueing Network Models Appendix F R

target mnmultiprogramming level and a separate queue. One or more Jjob classes
can be assigned to a domain.

3) [Disciplines] All product form queueing disciplines are allowed. In

addition, the CPU queueing discipline can be preemptive-resume priority.
4) [I/0 Devices] I/0 devices each have their own service times (which include
channel and controller delays).

Buzen collected data from the system using the IBM Resource Measurement
Facility (RMF), to obtain estimates for the model's parameters. He then
comapred the model's predictions of mean response time (broken down by Jjob
class), device utilizations, and total throughput with those measured from the
running system. Typically, the models predictions were off by less than 10

percent, and in many cases the predictions were very accurate.

To help complete the picture without belaboring the point, let us
briefly consider some further applications. Queueing network models have been
used to study the performance of multiprocessing systems. Sauer and Chandy
modeled general multiprocessing systems (tightly coupled systems such as
C.mmp) to analyze the performance characteristics of such systems [Saue79a].
Specifically, they considered the effects on performance of CPU service
distributions and disciplines, the level of multiprogramming, multitasking,
and job priorities. In their analyses they compared the performance of a
uniprocessor with unit speed, to that of a multiprocessor having N processors
each with speed 1/N (for N = 2, 4, 8). Considering how cheap microprocessors
are, one would think the multiprocessor would be far less expensive (compare 8
Intel 8086's to an IBM mainframe). Sauer and Chandy included in their model a
performance reduction factor based on the work of Fuller (he found that the

degradation in performance caused by the contension of processors for memory

was less than 10 percent for actual and proposed C.mmp configurations).

W

Basically, Sauer and Chandy found that given a sufficiently high multiprogram-

[K
e

ming level, that the multiprocessing systems could, even using a simple
scheduling strategy (FCFS), obtain system throughputs close to those obtained

o .
b

LS

by the uniprocessor system (in the range of 70 to 100 percent).

Finally, an interesting application of queueing network models was done
by Browne, Chandy, and four other consultants, in the development of the Air
Force's Advanced Logistics System (a large data management system) [Saue8i],
The queueing network model was composed of four submodels: one for the CPU's

(2 Cyber 70's), one for the memories both private and shared (million words),

A e e T T TR LY

_% Appendix F Queueing Network Models Page 123

one for the database disks (100 disks), and one for the system/scratch disks
and tape drives (8 disks and 24 tape drives). The model predicted that the

proposed system was 1inadequate because of insufficient capacity in the

system/scratch disk subsystem and in the CPU's., Both of these predictions
were confirmed by subsequent operational experience and measurement. j%ﬁf}’

Amazingly, the entire modeling effort required only two months for the six .f:;i"

consultants to complete.

F.3.2 Application to Distributed Procesaing Systems

Currently distributed processing systems are generating much research
interest, and rightly so. They potentially provide for high system
availability, reliability, and performance,and for incremental growth and con-
figuration flexibility [Ens178]. This flexibility provides for many degrees
of freedom in the design process. Because of this, modeling of the per-
formance of distributed processing systems becomes very important., Within the
framework of the ISO Open System Interconnection Architecture several design
decisions need to be made. Many ofthese decisions will have a significant

impact on the performance of a distributed system [Tane81].

Basically, queueing network models are used in two types of studies of
distributed processing systems [Wong78]. The first type of study is directed
at the communication subnetwork, while the second is directed at the user-

resource network.

Performance studies of the communication subnetwork are concerned with
the delivery of messages. Performance measures of importance here are message
end-to-end delay, message throughput, and channel utilizations. Three design
areas are involved in these studies. First, the system configuration (assum-
ing a given topology) may be modeled to answer questions such as what capacity
channels to use and how many message buffers to provide. Second, the basic
control algorithms of the network layer such as routing, congestion control,
and access protocols can be modeled and analyzed to determine the best network
control strategy. Finally, at the transport layer, flow control and virtual
circuit path selection can be modeled to address end-to-end concerns,

As an example of such a study, let us consider a model of a message

switched network (note: packets can be regarded as small messages) [Wong78].
@5;' The type of communication subnetwork considered in this study consists of

several intermediate processors (IMP's) connected by communication channels

PIPRERVER

« 2 Ql' o
s
'J‘;’

u'_‘“ I

Page 124 Queueing Network Models Appendix F

(C's). The intermediate processors are responsible for the usual store and
forward operations of message buffering and outgoing channel selection, while

the channels are responsible for transmitting messages form IMP to IMP.

The subnetwork is modeled as an open BCMP queueing network, where mes-
sages originating from user terminals and host computers move from source to
destination by successively queueing for service at the two types of nodes.
One type of node represents the intermediate processors, while the other
represents the channels, For example, consider a plece of the queueing
network consisting of three intermediate processors (one having external
arrivals), and the channels connecting them.

TR
! —— !
. !
| e IMP e >
s o
i ———— ‘
| —— T
| ! ——
v c———— |

SRS I TS Y J p—
A ———
! | —
! — T
! —— !
| | ————
| RS TTRT < J pee—
! c—— |
| —— !
I C 1K

As a first order approximation, it is assumed that the queueing delays
and service times at the intermediate processors are negligible. This is done
in Wong's model (based on Kleinrock's work [Klei76]) by letting the IMP nodes
have no queueing and zero service time (essentially these nodes carry out
instantaneous routing) [Wong78]. The service time at each of the channels in
this model is given by the message length divided by the channel capacity. 1In
addition, the messages are classified according to their source and destina-
tion IMP's. The routing of the messages at the IMP's is done on the basis of
their glass and can be either random or fixed. For the sake of tractability

;Q; Appendix F Queueing Network Models Page 125

some further assumptions are needed: The external arrivals are Poisson, all

:ii: message classes have the same exponential message length distribution, the
3;» queues are unbounded, the discipline is FIFO, and Kleinrock's independence
?:E assumption holds (an approximation stating that each time a message enters a

node its length is redrawn from the exponential distribution).

s Kleinrock solved this model for mean end-to-end delay, and plotted end-

,i to-end delay versus throughput. He found that the delay was small until the
j&é system was operated at near full capacity (i.e., one or more channels near
-jpj saturation), at which point the delay increased exponentially. Wong extended
5‘ Kleinrock's solution by solving for the probability distribution of end-to-end
(-: delay for each message class (this allowed variances and percentiles to be
iii computed). In a model validation study Kleinrock extended this model to
:;t include the processing time of the IMP's, propagation delays, and other
:i: features pertinent to the ARPA network. He found that the mean delay cal-
;f; culated from the model was 73 msec., while that derived from the measurement
'Eﬁz data was 93 msec. This is a discrepancy of 21.5 percent, not unreasonable
*ﬁ: considering the complexity of the ARPA network.

{’ﬂ Many extensions to this basic model have been seen in the literature.
::: Wong extended the model to consider the problem of buffer management using a
A finite buffer model [Wong78]. Wong has also modeled end-to-end flow control.
?ié Samari and Schneider extened Kleinrock's model by considering delays and ser-
s vice times associated with the IMP's, and by including a correction factor to
-:;: account for the nonexponential nature of the interarrival time of input to the
‘};: channels [Sama80]. They tested their model against a simulation model and
:{ found that they differed by less than 7 percent (note the analytic model required
JFf far less computer time). Kurinckx and Pujolle applied a similar model (where
}:} the nodes were IMP's) to study the end-to-end control through virtual circuits
E:? in a computer network built following the X.25 Recommendations [Kuri80]. They
j&& were particularly interested in determining the maximum buffer overallocatinn
'.;-.': for a given probability of overflow.

ﬁ;ﬁ Turning now to studies of the user-resource network, we are now concer-
iiﬁ ned with the performance of higher level services. This corresponds to the
;:E application layer in the Open System Architecture. Some of the problems here
!E: are concerned with which processes to run where, and where to place data.
HEE: Finding optimal (or near optimal) solutions to these problems can greatly help
e

o

Q.

........
. -,

e
. .
. Pd

A,

Page 126 Queueing Network Models Appendix F

system performance. The implementation of these solutions would be 1in the
system's distributed operating system and/or distributed database system.

As an example consider the problem of scheduling a set of processes on a
fully distributed processing system. An ideal system level scheduler should
have knowledge of the communication needs of the processes in the system and
the status of the processors in the system. A particular concern would be
that of efficiently scheduling distributed programs such as a distributed com-
piler [Mill82], so as to minimize its communication waiting delays.
Currently, scheduling as complex as this has not been modeled. However, Chou
and Abraham modeled system level scheduling stochastically [Chou82]. They
considered the problem of scheduling a set of processes (or tasks) on a set of
heterogenous processors. They presented an algorithm that optimally assigns

tasks to processors, which is based on Markov decision theory.

Finally, in an attempt to determine the overall performance of a
distributed processing system, Wong combined his communication subnetwork
model with a model of a simple user-resource component consisting of a set of
remote terminals and a single host with local terminals [WongT78]. Further
assumptions for this model are: The CPU discipline is processor sharing, and
the think time and CPU service time have rational Laplace transforms. Since
this i1s a BCMP geueing network, Wong found an exact solution for the mean
response time for local and remote users. He plotted the mean response times
versus the number of local users for various numbers of remote users. As
expected, beyond a certain threshold the mean response time increases linearly
with the number of local users.

Other than the studies of the performance of the communications sub-
network, there have been few analytic models of distributed processing
systems. In particular, more work needs to be done in modeling the higher
level services such as system level scheduling, and in devel 1-.g integrated
models that take into account both the characteristics of the communication

subnetwork and the characterictics of the various resources connected to the

subnetwork (e.g., processors along with their memories, terminals, secondary

storage devices, and other peripherals).

AR
., -}S'S,\’ »

References

[Alle80]

[Bard78]

[Bask75]

[Brue80]

[BuzeT3]

[BuzeT8]

{Chan78]

[Chan82]

[Chou82]

[Coop81]

[Denn78]

[Ens178]

[Fosec77]

[Gord67]

[Grah78]

(Heym82]

Page 127

REFERERCES

Arnold O. Allen, "Queueing Models of Computer Systems,"™ Computer,

Y. Bard, "The VM/370 Performance Predictor," Computing Surveys, Vol.
10, No. 3, Sept. 1978, pp. 333-~342.

Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G.
Palacios, "Open, Closed, and Mixed Networks of Queues with Different
Classes of Customers," J. ACM, Vol. 22, No. 2, April 1975, pp. 2u8-
260,

Steven C. Bruell and Gianfranco Balbo, Computational Algorithms for
Closed Queueing Networks, Elsevier North-~Holland, Inc., New York,
1980.

Jeffrey P, Buzen, "Computational Algorithms for Closed Queueing
Networks with Exponential Servers," Comm. ACM, Vol. 16, No. 9, Sept.
1973, pp. 527-531.

Jeffrey P. Buzen, "A Queueing Network Model of MVS," Computing Sur=-
veys, Vol. 10, No. 3, Sept. 1978, pp. 319-331.

K. Mani Chandy and Charles H. Sauer, "Approximate Methods for
Analyzing Queueing Network Models of Computing Systems," Computing
Surveys, Vol. 10, No. 3, Sept. 1978, pp. 281-317.

K. Mani Chandy and Doug Neuse, "Linearizer: A Heuristic Algorithm
for Queueing Network Models of Computing Systems," Comm. ACM, Vol.
25, No. 2, Feb. 1982, pp. 126-134,

Timothy C. K. Chou and Jacob A. Abraham, "Load Balancing in
Distributed Systems,"™ IEEE Transactions on Software Engineering,
VOl. SE-8, NO.“, July 1982’ ppo u01-u12.

Robert B. Cooper, Introduction to Queueing Theory, 2nd Ed., Elsevier
North-Holland, Inc., New York, 1981.

Peter J. Denning and Jeffrey P. Buzen, "The Operational Analysis of
Queueing Network Models," Computing Surveys, Vol. 10, No. . 3, Sept.

Philip H. Enslow, Jr., ™What is a 'Distributed' Data Processing
System?” Computer, Jan. 1978, pp. 13=21.

G. J. Foschini, ™On Heavy Traffic Diffusion Analysis and Dynamic
Routing in Packet Switching Networks,"™ in Computer Performance, K.
M. Chandy and M. Reiser (Eds.), Elsevier North-Holland, Inc., New
YOPk, 1977, pp. 1419-5111.

William J. Gordon and Gordon F. Newell, "Closed Queueing Systems
with Exponential Servers," Operations Research, Vol. 15, No. 2,
March-April 1967, pp. 254-265.

G. Scott Graham, "Queueing Network Models of Computer System Per-
formance," Computing Surveys, Vol. 10, No. 3, Sept. 1978, pp. 219-
224,

Daniel P Heyman and Matthew J. Sobel, Stochastic Models 1n

.........
..........
o,

A et -
............

. - ~ - N Y. et e s
e - -
- “ . PR o e e .
-« - -t

P AL A A N A
a o, .

M)
e .
of - "
v PO
. PR
*
'

»
[y
1

£,
I

LR P S N Y
v

i
KRN

& s %

2000227

g tptetete”
N)
. . .
o RS
s
v
PRI 08 v
. »
P o o
5 .
-

Y

'y 4

[Igle78]
[IgleT8]
) [Jack5T7]
:é;g [Jack63]
N [Jack54]
\
:{: [Jaco82]
.}}:
Sj\
o [Kel179]
RO
o [K1e176]
B
ifﬁ: [KobaT78]
RN
(
- -:‘.
P [Kuri80]
;;;:
b [Mi1182]
e
1
g
-"j [Munt78]
o
o [Rose78]
&_:. .
",
o [Sama80]
3 (53
77
-~
e [Saue79a]
or
%
f$ [SaueT9b]
o
.r_:.
.

-.-"'-"\"'\-.\s\\-~

B A A

.-.-

References

Operations Research, Vol. I: Stochastic Processes and Operating
Characteristics, McGraw-Hill, Inc., New York, 1982,

Donald L. Iglehart, "Regenerative Simulation of Response Times in
Networks of Queues," J. ACM, Vol. 25, No. 3, July 1978, pp. 449-460.

Donald L. Iglehart, "The Regenerative Method for Simulation
Analysis," in Current Trends in Programming Methodology Vol. III:
Software Modeling, K. M. Chandy and R. T. Yeh (Eds.), Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1978, pp. 52-T1.

James R. Jackson, "Networks of Waiting Lines,"™ Operations Research,
Vol. 5’ 19571 pPpP. 518-521.

James R. Jackson, "Jobshop-Like Queueing Systems," Management
Science, Vol. 10, 1963, pp. 131-142,

R. R. P. Jackson, "™ueueing Systems with Phase-Type Service,"
Operational Research Quarterly, Vol. 5, 1954, pp. 109-120.

Patricia A. Jacobson and Edward D. Lazowska, "Analyzing Queueing
Networks with Simultaneous Resource Possession," Comm. ACM, Vol. 25,
No. 2, Feb. 1982, pp. 142-151.

F. P. Kelly, Reversibility and Stochastic Networks, John Wiley &
Sons, Ltd., Chichester, 1979.

Leonard Kleinrock, Queueing Systems, Vol. II: Computer Applications,
John Wiley & Sons, Inc., New York, 1976.

Hisashi Kobayashi, "System Design and Performance Analysis Using
Analytic Models,™ in Current Trends in Programming Methodology Vol.
III: Software Modeling, K. M. Chandy and R. T. Yeh (Eds.), Prentice-
Hall, Inc. Englewood Cliffs, N. J., 1978, pp. T2-114.

A. Kurinckx and G. Pujolle, "Overallocation in a Virtual Circuit
Computer Network,

John A, Miller and Richard J. LeBlanc, "Distributed Compilation: A
Case Study", Third International Conference on Distributed Computing
Systems, Oct. 1982, pp. 548-553.

Richard R. Muntz, "Analytic Modeling of Interactive Systems,"
Proceeding of the IEEE, Vol. 63, No. 6, June 1975, pp. 946-953.

Richard R. Muntz, "Queueing Networks: A Critique of the State of the
Art and Directions for the Future," Computing Surveys, Vol. 10, No.
3, Sept. 1978, pp. 353-359.

Clifford A. Rose, "A Measurement Procedure for Queueing Network
Models of Computer Systems," Computing Surveys, Vol. 10, No. 3,
Sept. 1978' ppo 262‘280.

N. K. Samari and G. Schneider, ™A Queueing Theory-Based Analytic
Model of a Distributed Computer Network,® IEEE Transactions on Com-
puters, Vol. C-29, No. 11, Nov. 1980, pp. 994-100%.

Charles H. Sauer and K. Mani Chandy, "The Impact of Distributions
and Disciplines on Multiple Processor Systems, Comm. ACM, Vol. 22,
No. 1’ Jan 1979' ppl 25-3"'

C. H. Sauer and E. A. MacNair, "Queueing Network Software for
Systems Modelling," Software -- Practice and Experience, Vol. 9, May

R R
RS

=
l-

YAARZ. Jaabt

'." .'-.'-/J
e

/ l'. ER

3 a4y
A I AL

t

AEIS
" “ "\’I .l ¢"
e T

) -
. . L]

A]
.2, .
- L

e
¥ ¢
Ry

a4y 4

[

i

Pl ol

0 O
R R ‘
e e e

..l'

[Y

.ll‘* ‘.‘
/] o.:_..a,’/f
PR T

..l
i &

27

References

[Saue80]
[Saue81]
[(Tann81]

[TowsT78]

[Wong78]

[Zaho82]

ERENAAR DS R S CHERE AL AL AGS T T T T G T M T N L VL VIR)
‘-{'."..‘-".'4
bt TR PO |
ST

RN

— g

Page 129

1979, pp. 369-380.

Charles H. Sauer and K. Mani Chandy, "Approximate Solution of Queue-
ing Models," Computer, Vol. 13, No. 4, April 1980, pp. 25=32.

Charles H. Sauer and K. Mani Chandy, Computer Systems Performance
Modeling, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1981.

Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., Eng-
lewood Cliffs, N. J., 1981.

D. Towsley, K. M. Chandy, and J, C. Browne, "Models for Parallel
Processing Within Programs: Application to CPU:I/0 and I/0:I1/0 Over-
lap," Comm. ACM, Vol. 21, No. 10, Oct. 1978, pp. 821-831.

Jo. W. Wong, "Queueing Network Modeling of Computer Communications
Networks, "™ Computing Surveys, Vol. 10, No. 3, Sept. 1978, pp. 343-
351.

John Zahorjan, Kenneth C. Seveik, Derek L. Eager, and Bruce Galler,
"Balanced Job Bound Analysis of Queueing Networks," “omm. ACM, Vol.
25, NO. 2, Febg 1982, ppo 13“-1“1.

Appendix G

A Distributed Compiler Page 131

APPENDIX G

THE DESIGN AND EVALUATION OF A DISTRIBUTED COMPILER

John A. Miller
Richard J. LeBlanc

G.1 INTRODUCTION

The increasing availability of distributed computing systems connected
by local area networks has produced interest in the application of distributed
computing to software traditionally run on uniprocessors. The principal
motivation for such application is to attempt to decrease the response time of
programs by partitioning them into components which can be executed in paral-
lel. This paper describes an experiment which tested the feasibility of
implementing a compiler as a distributed program. It should be noted that
this study is intended only as an initial examination of this problem. The
results are somewhat dependent on the hardware configuration on which the
study was conducted and on the nature of the task performed by a compiler.

However, some generalized conclusions can be drawn from our experience,

To carry out this experiment, we constructed two versions of a compiler,
a distributed version and a single-pass version. We then compared the
response times of the two compilers on test programs of various sizes. It was
our hope that the distributed version would show a significant improvement in
response time due to its utilization of parallelism inherent to the compila-

tion process.

The experiment was performed using the [{acilities of the computing
laboratory of the School of Information and Computer Science at Georgia Tech.
The distributed system available included a network of five Prime computers,
two Prime P550's and three Prime PU00's. The computers are interconnected by
Ringnet [Gord79], a packet switched communication system. Ringnet is a subset
of PRIMENET (PRIMENET refers to all Prime's networking products) that deals
with local area communication. Ringnet is an unidirectional loop network that

consists of a node controller, a coaxial transmission cable that provides an 8

*This paper has been submitted to Computer Networks.

>
'l.l

]
R
]
13
'
[4
s
[}
’
s
.
'l
r
K
14
1]
.

n
[o

Page 132 A Distributed Compiler Appendix G .
SRS
o R0
ffuf Mbits/sec effective bit rate, and interfaces to the transmission cable at each %El}}.
3N node. DN
"; A group at the Illinois Institute of Technology have done considerable v ._1
*:ﬂ: research related to this work. They first implemented a distributed compiler -5' :?
\;; for the language DYNAMO on their network computer, known as TECHNEC [Huen77]. i
ik TECHNEC is a network of several LSI-11 computers that work together to execute

a single job at a time. More recently they have reported work on a

;:2 distributed Pascal compiler for TECHNEC [E1l-D79]. Their work has included
ﬁ:: considerations of automatic partitioning of object code as well as attempts to
;:i distribute the executions of a compiler. Our work is related to the latter of
\\ these efforts. This report goes beyond their publications by presenting a
:“\ comparison of the performance of distributed and standard compilers.

i

* G.2 THE COMPILER

" G.2.1 The Language

;n The programming language used for this study was a subset of Pascal,
'E:; called Jigsaw, used in compiler writing courses at Georgia Tech. This
i:‘ language was chosen because it is simple enough to keep the compiler develop-
{) ment time as short as possible, yet it contains enough features to present
il; "typical® compilation problems. The features of Jigsaw include: if and while
EEE control statements, integer, real, array, and record data types, and
::j paranmeterized procedures.
~ G.2.2 Components of the Compiler
';SE The process of partitioning the problem is of paramount importance in
o implementing a distributed program. Ideally, the component parts of a
’:*: distributed program should each implement a single step of the task being per-
}1: formed. More importantly, the interaction between the components should be
;il simple and infrequent (relatively speaking). Such a partitioning will result
iis in components which can easily be connected as a pipeline. The Jigsaw com-
;E; piler was partitioned into the following components (all written in Pascal):
,1.! a lexical analyzer, a syntactic analyzer, and a semantic analyzer/code
?3: generator. A separate code generator would usually be needed, but the target
‘;?E code (for a hypothetical machine) was sufficiently similar to intermediate
i:; code (e.g., quadruples) to make a separate code generation step unnecessary.
- These components work together 1in series to decompose source statements,
‘ﬁs analyze their contents and, finally, compose the target or object code. The
]
X
& o
S % .-
A A Ry el
Ay A ol -

y

C s

L [

18-
""I'

oy

o '} o
- P
“._, (‘. <
R A

£
[

P g T
L3t Ry
.

& 4

OO]
]
S

4

Appendix G A Distributed Compiler Page 133

process is analogous to an assembly 1line, where the product goes through

different phases on its way to completion.

G.2.2.1 Lexical Analyzer

The lexical analyzer or scanner is the first phase of the compilation
process. Its function is to read lines from the source code file and break
them up into their component symbols, called tokens. The tokens of a program-
ming language are analogous to the words and punctuation marks of English
text. The extraction of tokens from the input line is accomplished by using a
finite state machine that does pattern matching on the characters in the line.
When it finds a valid pattern it outputs a number that specifies the class to
which the token belongs (e.g. identifiers make up a class), and, where
additional semantic information is necessary, it outputs the token string
itself, For example, when the token '123' is found, the lexical analyzer out-
puts the class number for integer constants and the string '123', so that the
constant value may be computed later. Thus the lexical analyzer performs the

mapping shown in Figure 1(a).

The 1lexical analysis component was constructed using a lexical analyzer
generator, a relatively common compiler development tool available on our com-
puting system. This tool consists of a table~driven lexical analyzer and a
lexical table generator. To use this tool, one specifies the tokens of the
language as regular expressions. The generator program reads this information
and produces a table that is used by the lexical analyzer to make decisions in
the pattern matching process. This standard lexical analyzer, which uses the

generated table, is easily incorporated in a compiler,

G.2.2.2 Syntactic Analyzer

The second phase of the compilation process is performed by the syntac-
tic analyzer or parser. It takes the token numbers generated by the lexical
analyzer and collects them together to form phrases that are specified by
grammatical rules. This grouping of tokens into phrases is accomplished by a
pushdown-store machine. When it determines that a string of tokens satisfies
a grammatical rule, it replaces that string with a nonterminal symbol that
stands for a string of that type. In addition, for certain rules, actions
must be carried out to manipulate semantic information or generate some form
of code. These actions are specified by "action numbers" attached to these

rules in the grammatical specification. Thus the syntactic analyzer performs

Page 134 A Distributed Compiler Appendix G

the mapping illustrated by Figure 1(b).

We made use of another common tool, a LALR(1) parser generator, to
construct the syntactic analysis component. It consists of a table-driven
parser and a parsing table generator. To use the generator, one simply writes
a specification of the grammar for the language in Backus-Naur Form (BNF).
The generator will produce tables from this information which will be used by
the parser to make parsing decisions.

G.2.2.3 Semantic Analyzer
In this implementation, the semantic analyzer constitutes the third and

final phase of the compilation process. Its basic function is to implement

-
.
»
i
s
..
«

the T"semantics" (meaning) of the program. It is driven by the action numbers T ?%,g
generated by the parser, These semantic action numbers have routines iiiﬁs;
associated with them that manipulate information on a semantic stack and/or ?&:33
generate some form of code (which in this compiler is the target code). ::Zjﬁj

-4

Some of the semantic actions require information from the lexical
analyzer. For example, one semantic action specifies that an identifier
should be pushed onto the semantic stack. The identifier, in the form of a

token string, is obtained directly from the lexical analyzer. Thus the
semantic analyzer's task is described by the diagram in Figure 1(c).

No tools were available to automatically construct this component. Thus
the semantic analyzer was entirely hand-coded. It consists of action routines
to carry out semantic actions, symbol table routines to store attributes of

identifiers and code generation routines to output the simple target code.

G.2.3 The Distributed Compiler

Having defined these basic components, we next consider the task of put-
ting them together to form a complete compiler. Because of the high degree of
modularity and the simple interfaces, an obvious way to have the components
work together is to let them be separate processes that communicate with each
other by sending messages. This approach was adopted to form a distributed
Jigsaw compiler. The communication links for this compiler are those that are
formed by fitting the previous functional mapping diagrams together, Figure
1(d) illustrates the final structure.

Notice that the components fit together in a pipeline fashion, where the

4.

input goes through successive transformations on 4its way to the finished

/
BANAE P4

% 5
1)

A AV AL A (i N N AR A A b GO
AN
<,
b .

AN

\'-.~-r RN s e ‘.r..‘—. .;-.. RSN AT A A e 4 .‘N".-:'}"F‘.".‘ vy oyTeTy
- - T e . - B -t e SRR

Appendix G A Distributed Compiler Page 135

product, namely the target code. Thus the only interdependency is that
processes must be fed information from their predecessors. This enables the
processes to be implemented efficiently as communicating distributed proces-
ses, where each process runs on a separate computer in the aforementioned

local area network.

Jdeally, we would like a system where each component could continue run-
ning as long as it had input to process. For instance, the 1lexical analyzer
could run continuously and keep sending out token numbers and strings until it

encountered the end of the input file. 1Its output would be accumulated in the

message queues at the syntactic and semantic analyzers. However, since the
message queues are finite, if the lexical analyzer runs faster than the other
two components it will eventually be forced to wait for them, thus destroying
the valuable inherent parallelism. Therefore, steps need to be taken to tune

or optimize the performance of these cooperating processes.

There are three basic factors to be taken into consideration. First,

the speeds of components need to be balanced. Assume that the total amount of

time required by the components, is t¢, tp, and t3 respectively, where T = tq

+ t2 + t3 equals the total compilation time for a serial implementation. Then
the maximum possible speed up factor would be

T
fg = ~°°
max {t1 t2,t3}
Clearly, the best we can do is have t1 = t2 = t3, in which case fg5 * 3, that

is, the parallel version would potentially be 3 times faster than the serial

version. Notice that this factor needs to be considered in the initial
partitioning of the problem. A compromise may be required between the goal of
balancing and that of conceptual separability or modularity. In the case of
our compiler, we discovered that there was little conflict between these

goals.

The second factor to be considered is the size of what we called the
"intervals of independence". These intervals refer to the amount of time the
component processes can run independently (that is, without sending or receiv-

ing messages). They are important because communication and waiting delays

are avoided during these intervals. This argues for us making the intervals

g

large. However, making the intervals too large, makes the time to fill the

vt
(SN

pipeline significant, and may result in components having to wait too long for

AT
A R

TUe 1
[g
»

o

oy
P
o

.

D

.

P

.

.

'

.

f

'

.

.

.

.

¢

)

’

'

»

et

T
.
[N}

L ot

“; Page 136 A Distributed Compiler Appendix G fii?‘
e PR
~ B
5%; their input. Basically, we are trying to optimize between two separate types tf{;ﬁ
j?j of serialization. The first type of serialization is illustrated by the time ":.
(; diagram for a single-pass compiler in Figure 2(a), where dti, dtp, and dt3 @re oL .}
= the single step processing times for the lexical, syntactic, and semantic ARNAN
:g: analyzers, respectively. The second type is illustrated by a hypothetical :ﬁ;j;;ﬂ
:E: multi-pass compiler that communicates using memory rather than secondary e
\“; storage. The time diagram for it would look like the one in Figure 2(b).
E? The ideal design of a distributed compiler would result in overlapping
E:; execution of the three components, as diagrammed in Figure 2(c¢). If the
}ii intervals of independence are too small, then the behavior will approach that
i . of a single pass compiler, where for example, the syntactic analyzer would o
2:? wait for a message from the lexical analyzer, quickly do its processing, send -1
%;i results to the semantic analyzer (waiting if its queue is full), and finally 5.
ii{ go back to waiting for a message from the lexical analyzer. Making the inter- i;
o3 vals of independence larger provides the advantage that more processing will
::3 be done within each interval relative to the amount of time spent waiting and
¢:: transmitting messages. However, making the intervals too large will result
‘{ai in, say, the syntactic analyzer having to wait too long to get information
(from the lexical analyzer before it could proceed. Clearly the optimal solu-
’;;; tion depends on the characteristics of the network, the computers, the operat-
.}ef ing system and the individual processes themselves.
;T; A simple way to control the size of the intervals is to adjust the
,,; amount of information sent in each message. For example, the lexical analyzer R;L:-
;&S sends token numbers to the syntactic analyzer and token strings to the e:;};v
Ei;f semantic analyzer. The lexical analyzer saves these numbers and strings in Eigii;
o internal buffers. Only when it has filled one of the buffers, does it send a TN
};, message (the contents of the full buffer) to one of the other préeesses. This
*;i: buffering mechanism enables the intervals of independence to be increased and
'23; the number of individual messages passed to be reduced.
o

Y

The third and final factor to be considered is that of balancing the

flow of messages between the processes. That is, for each communication link,

4% %%

we want the number of messages that are sent to be approximately equal. As an

example, again consider the lexical analyzer. Observation shows it sends more

P XA AAS
M

)
py

b

than twice as many token numbers as it does token strings. Suppose it has
Just filled its buffers and sent them out.

04y by 24
el @

s
';_-.‘1.

9.7

I
et

Sy
P
o e -c‘ -

Y

Appendix G A Distributed Compiler Page 137

N: token number buffer n, n2 n3 ny n5 ng

S: token string buffer s1 s2 =3
The syntactic analyzer will receive the N buffer, process it and eventually

send out a semantic action number buffer.

A: action number buffer 2y ap a3 ay as ag
Now, if the token numbers that correspond to the token strings in S were in N,
then action numbers that tell what to do with the strings in S will be in A.
Thus balancing will result in smooth information flow where waiting times will

be small.

As an example of what can happen when the flows are not balanced, assume
the message queue size equals 2 (as is the case on our system), and that the N
buffer holds 8 elements and the S buffer holds 1. After about 7 tokens have
been read, 3 token strings will have been sent. However, since no token num-
bers have been sent, the token strings will not have been received, so that
the lexical analyzer will be blocked indefinitely waiting to send the third
token string. Thus, as this extreme case illustrates, unbalanced message

flows can even result in deadlock.

Having already taken care of the first factor, we were left with the
task of choosing the buffer sizes to optimize the second and third factors,
We first attacked the third factor by setting the S buffer size at 10 token
strings, and testing the response times for various N and A buffer sizes. For
test programs of 600 lines of code, the responses for N,A = 20 + 2 were 1:02
minutes and the response increased slowly as N,A moved outside this range.
Thus the optimal ratio of buffer sizes, N:S:A, was about 2:1:2. We then
attacked the second factor by holding this ratio fixed and varying the
magnitude of the buffers. For test programs of 600 1lines of code, the

response times and processor times are reported in Table 1.

Since our network limited messages to at most 256 bytes, we were unable
to test larger buffers (20 token strings requires 240 bytes). The data in the
table clearly show that increasing the size of the buffers when the buffers
are small provides dramatic improvements. However, once the bufferd sizes
(N,S,A) reach (12,6,12), the response curve becomes rather flat and remains so
through the rest of the range tested. We thus picked the minimum point of
this curve as the values to set the buffer sizes for the distributed compiler,
that is we let

® et e ot e -".-"-'-'.-'.- "-'." -
R (O S . BRI -
a A.:h oYL VPR RIS T PR DI IO T I

Page 138 A Distributed Compiler Appendix G

&

3

N -N hold 20 token numbers (2 bytes/number),

e S hold 10 token strings (12 bytes/string),

N A hold 20 action numbers (2 bytes/number).

Lo G.2.4 Single-Pass Yersion

iii A single-pass version of the compiler was also constructed to be used as
::: a standard of comparison in evaluating the performance of the distributed com-
:;\ piler. Jt uses the exact same components as the distributed version,
23; However, instead of having them communicate by sending messages, they com-
;E; municate using procedure invocation, with the syntactic analyzer acting as the
}jf driver. When it needs a token it calls the lexical analyzer and similarly
;ﬁ‘ when it has determined that a semantic action needs to be performed it calls
\.. the semantic analyzer. Thus the single-pass version is implemented as a
'; sequential process that runs on a single computer.

e G.3 THE EXPERIMENT

¥;: The point of this case study was to test the feasibility of distributed
:E: compilation, As described above, distributed and single-pass versions of the
\': same compiler were constructed, differing only in global control structures.
Y*: Thus the only factor which could account for any performance differences is
‘,w the method of communication between the components and the parallelism it
;?; allows., The distributed version communicates by sending messages; the single-
i&g pass version communicates by procedure invocation and parameter passing.

W) Therefore, if we consider the total amount of processing time consumed by the
%5 compilers in compiling the same program, it seems likely that the distributed
{i version would require a little more time, as message passihg requires more
ffj overhead than procedure invocation. However, this factor will be unimportant
- if significant parallelism can be achieved in the distributed version, thereby
;_ substantially reducing total response time. Thus we will compare the response
E:E time of the distributed version to that of the single pass version.

;ﬁ: For this experiment three Prime computers in our local area network were
é; used, two Prime P550's, systems A and B, and one Prime P400, system C, These
tf systems are compatible with respect to machine instructions and operating
%:? system, but system C is a little slower. The components of the distributed
!\ compiler were placed as follows: lexical analyzer on system A, syntactic
;,' analyzer on system B, and the semantic analyzer on system C. The single-pass
,: compiler was run on system A.

8%

o

o

o

R R T e e

~~~~~~~~~~~

NN s

. ‘.'.‘. . .. LN N
T tamabath o e Wt s 2AW AT A

.
L
L

-



Appendix G A Distributed Compiler Page 139

Specifically, the following tests were performed. First the two com-
pilers were tested under completely unloaded conditions; that is, the only
other load on the system was due to the operating system. These conditions
are of interest as they indicate the maximum possible benefit that can be
achieved by distributing a compiler. For this case, the two compilers were
run on Jigsaw test programs ranging in size from 25 to 1200 1lines of code.
For each program the response time and processor (cpu) times used were recor-
ded. The results are shown in Table 1 and Figure 1. All times in the tables
are in units of seconds, except for the longer response times, which are

expressed as 'minutes:seconds'.

Secondly, the compilers were tested under moderately loaded conditions,
where approximately five people were using each system. Although, this does
not constitute a well controlled experiment, it does give an indication of the
trend in the response times as the load factor is increased. The results for

this case are shown in Table 2.

G.4 INTERPRETATION

The data reported in Table 1 and Figure 1 clearly indicate that
distributed compilers can achieve significant improvements in response time
over traditional single-pass compilers. Indeed, for programs of more than 100
lines of code the distributed compiler was 2 to 2.5 times faster than the
single~pass compiler. For example, for a program of 1200 lines, the single-~
pass compiler took 4 1/2 minutes, while the distributed compiler took only 2
minutes, This ratio obviously would have a considerable impact when compiling
even larger programs. For programs smaller than 100 lines, we see that use of
the distributed version is still advantageous, although 1less overwhelmingly.
This loss of advantage can be accounted for by the fact that the distributed
version has fixed overhead involved in setting up the virtual circuits and
filling the pipeline (i.e,, the syntactic analyzer cannot start until the

lexical analyzer has filled a buffer with token numbers).

The message buffer sizes, used to control the frequency of interactions
between components of the program, turned out to be a very important per-
formance factor, Without buffering, the best speed-up factor obtained was
about 1.4 (as opposed to 2.5 with the reported buffer sizes). As buffering
was introduced and the sizes increased, performance at first improved rather

dramatically. The sizes used reflect a leveling off point in a graph of per-




o2 Page 140 A Distributed Compiler Appendix G

Tad formance versus buffer sizes.
e

Let us now examine the relationship between the performance of the

individual components and that of the distributed compiler. These components

P ]
I -

:{f, are roughly equal in the processing time that they consume, with the syntactic
:i? analyzer consuming the largest portion. Since tne maximum potential speed-up
;5; factor f. js 1limited by the slowest component, it is very important in

; distributed programs to concentrate performance Zmprovement efforts on such
2:; components. Note that the effects of improving the slowest component are much
j;g more dramatic with distributed programs. Speeding up the parser in our com-
iiﬁ piler by 15% would probably improve the performance of the distributed version
,‘ . by close to 15%, but it would improve the single-pass version by 1less than
e, half of that factor.

To determine the amount of processing time needed to distribute the com-
piler, we can compare the processing time used by the single-pass version with
that of the sum of the processing times of the distributed components. The

e tA
o N

8

difference between the sum column in Table 1 and the processor time column -

seems to be made up of two components: a fixed overhead of about 3 seconds,

PR N
SEF DAL

and a proportionate increase of about 5%. The fixed overhead results from the

% time necessary to initially set up the virtual circuits, and the proportionate

g%; increase is caused by the replacement of procedure invocation with message ~
hjﬁ passing. Compared with the positive effects of parallelism, these negative i:j;f:
P effects are not significant, :;:&:~
?ﬂz Finally, we consider the data from the tests where the system was nf e
i;; moderately loaded. Again the distributed version was faster, but the speed-up ,
:.: factor was much smaller, about 1.5. Thus it is apparent that the distributed

;i; compiler was more adversely affected by the load on the system than the

}ia single~pass version. This result 1is expected, since the speed of the

s distributed version depends on the smooth flow of information between the

%:?' processes and loading the system increases the competition for time slices, ~ _32
thereby increasing the probability that a message will be sent to a process in P\ f.
':{ a wait state. Hence, loading the system has the potential to increase effec- :3
a:a tive message transmission time and thus slow down the individual components. f:
:Eé A possible remedy for this problem would be to have a sophisticated . ?
o7 distributed operating system to oversee the operation of the network. If such I'-»—- L
S;: an operating system had knowledge of the running characteristics and the com- S?EE:
‘&j =

N ;

-

OIS CYEELY R SRR TR
\\:-\ "'.-.v'\w \.x:.‘.\._._.\) o ._.-_.-.J'_
LA S L TR ol T TS AL R . .

.&m "C‘ &\\\ﬁ.{\. » _s o A:;"_:‘ .z:_if.

A
-~




LI I R R ot St ASArAL A Al AN ._'-"_-_'.(,'.‘.‘_'. i)

]
2 Appendix G A Distributed Compiler Page 141
.i::
;;a munication needs of the processes in the network, then it could possibly
ifi schedule processes so as to enhance the smooth flow of information.
(¢
S G.5 CONCLUSION
:ii: The significance of this study is not merely that it demonstrates
EQE potential benefits of distributed compilation, but rather that it suggests
b that at least some class of programs traditionally executed sequentially can
E{i be successfully partitioned as distributed programs. We believe this class
Eiii includes not only compilers, but any program which operates as a sequence of
‘:Ef transformations on its input to produce some output. Such programs map nicely
; to distributed computing systems which provide a pool of assignable, general-
f:f purpose processors. In such a system, computers could be allocated to the
tﬁ component processes of the compiler (or other program) for the entire length
h:r of the compilation, thus achieving the ideal conditions of the unloaded tests.
ad It should, therefore, be possible to achieve speed-up factors of the magnitude
,E? we observed.
§E§ It should be noted that it was quite easy to transform a traditionally-
\1 structured compiler into a distributed one. Using message passing as the
&_\ means for communication between components requires only thoughtful design of
iﬁg component interfaces. No complex synchronization protocols need be devised.
-3: The message passing corresponds to simple procedure invocations in the
Ati‘ traditional program. Again, this should hold for a broader class of programs,
- We currently observe the development of systems which commonly provide
iﬁ conditions similar to those of the unloaded tests. With personal computers
,f;; and small business systems becoming inexpensive, networks of them are
proliferating. In such networks, the use of human resources rather than the
i:; use of cheap processors is optimized, so processors are, on the average, ligh-
;‘::i tly loaded and thus are available for use by distributed programs. Another
‘i; reason why such a system is a good candidate is that the proceasors are not
,)ﬂ very fast, so that use of parallelism is particularly desirable. Furthermore,
4,;j the memory capacity on these systems may be 1limited, making a distributed
,Eiﬁ program advantageous, since its component processes are naturally smaller than
tiﬁz the entire program would be if it were monolithic.
&

Finally, we must consider the system dependencies of our results. The
success of the distributed compiler depends on message delay times being

'l."ﬂ“ y

i

. 4
[J

.
5
A

I . o R « . . - . . .« I R TP T S Y « -~
e L% N L Te N te N LY P T b "N Lt e e
:q"‘f_ J:a:.t-?.- - N P -"\-/‘.'-":"~'. O -‘?1‘:'-'. A A RGN
'.\ SN o '4. ............. - Ao, B A ‘{ et
SUALS NS : VepTma e PR W B I N A N
v ROAVE SR K6, LR LT WS . ‘

- .'." LY
T et taT st Lt et Ay (WA



s

VAN A
¢

res

L3

I

B! |

l"
N
»

s,

At g
)
L)

v,
-
WMD)

‘s' -
] Q:

Y
Lt

7

& 8 8
e

Vo

Page 142 A Distributed Compiler Appendix G

small. Its loss of advantage as a load appeared on the system is direct
evidence of this dependency. Thus our results are most applicable to high-
bandwidth local area networks which can provide the necessary speed of message
delivery. The introduction of the concept of buffering messages within
program components as a tuning technique makes our results less dependent on
the more detailed system characteristics. With proper use of buffer sizes, it
is 1likely that our results could be matched on a variety of distributed

systems connected by local-area networks.

G.6 TABLES AND FIGURES
TABLE 1
BUFFER SIZE TEST RESULTS

BUFFER SIZES RESPONSE  SCANNER PARSER SEMANTIC

N S A TIME CPU TIME CPU TIME CPU TIME
(min:sea) (sec) (sec) (sec)
1 1 1 2:23 57 82 87
] 2 ) 1:36 k6 58 35
8 4 8 1:13 7] 55 32
12 6 12 1:06 52 53 31
16 8 16 1:03 41 53 3
20 10 20 1:02 30 52 31
24 12 24 1:03 10 52 31
28 14 28 1:03 30 52 3
32 16 32 1:08 39 51 31
36 18 36 1:04 39 51 31
4o 20 Ho 1:08 39 51 31

"
LG,

--------
-
------

P P LT
LS TECL S



Appendix G A Distributed Compiler Page 143

TABLE 2
TIMING DATA FOR RUNS ON UNLOADED SYSTEM ~-
SINGLE PASS COMPILER  DISTRIBUTED COMPILER -
PROGRAM RESPONSE PROCESSOR RESPONSE SCANNER PARSER SEMANTIC TOTAL CPY g:\“xj
SIZE TIME CPU TIME TIME CPU TIME CPU TIME CPU TIME TIME :f:“:d
(lines) (min:sec) (sec) (min:sec) (sec) (sec) (sec) (sec) ;i}f}i

25 T 5 5 2 3 3 8 L

50 13 9 8 3 5 5 13 o~
100 25 20 13 T 10 8 25 2
200 47 39 22 1 19 12 45 -
300 1:08 58 32 20 26 17 63 -
400 1:31 78 52 27 35 22 84 - =
500 1:54 96 52 34 3 26 104 Nt
600 2:17 115 1:02 40 52 31 123 Tty
700 2:39 135 1:12 47 61 36 144 "3
800 2:59 154 1:21 53 70 40 163 <
900 3:19 172 1:30 60 T7 45 182 A
1000 3:42 192 1:40 67 86 49 202 =L
1100 h:06 212 1:50 73 94 53 220
1200 4:30 230 1559 79 102 58 239

TABLE 3

TIMING DATA FOR RUNS ON LOADED SYSTEM

SINGLE PASS COMPILER DISTRIBUTED COMPILER
PROGRAM  RESPONSE PROCESSOR RESPONSE SCANNER PARSER SEMANTIC TOTAL CPU

SIZE TIME CPU TIME TIME CPU TIME CPU TIME CPU TIME TIME
(lines) (min:sec) (sec) (mingsec) (sec) (sec) (sec) (sec)
25 1 5 10 2 5 5 12

50 17 9 16 L} 6 6 16

100 35 20 28 8 12 8 28
200 1:10 o a9 14 20 14 h8
300 1:80 59 1:08 20 28 19 67
400 2:27 79 1:44 28 41 24 93

500 3:04 98 2:09 35 50 30 115




Appendix G

A Distributed Compiler

FIGURE 1

COMPILER STRUCTURE

> token numbers
w———) token strings

| ===e=> action numbers

!
!
r |
|
|
]

Lexieal
Analyze
syntax
analyzer

>

(A) LEXICAL ANALYZER TRANSPORMATION

characters
token numbers

R AR
N (KA SAN

(B) SYNTAX ANALYZER TRANSFORMATION

RN R e % R N 4
* e

>

token strings ————> |

senmantic

action numbers

=

| =====> instructions

(C) SEMANTIC ANALYZER TRANSFORMATION

analyzer

R

f
»
-t

R

o s LapAp
. 3
- PR

L4 W |

-

>| analyzer |

>| analyzer

| tokens | syntactic | aotions | semantic | target

source | lexical
>| analyzer |

23

PN ] A

tokens strings

(D) OVERALL COMPILER STRUCTURE

OO, | XAARAAAP



%
Y
<

.'-,)'l"-"

. ¢ & 1
PR

M3 semantic

Wv-aw‘rvi'.'~f.'\7‘lf.f.".ﬁ"J".".".".‘"."."'. e e e e
- ... - - .. - . . . o -~ e - . . > - - - -

Appendix G A Distributed Compiler

FIGURE 2
TIMING DIAGRAMS

dtq

lexical

dt2

. syntactic

dt3

-~ time

IR lexical

(A) SINGLE PASS COMPILER

I""'l‘""lonc l-"-'
at, dqtq dty
l"""l""'ooo l“"“

dt2 dto dt2

R T P P
dt3

time

syntactic

semantic

>

(B) MULTI-PASS COMPILER

looo' '
dtq

lexical | |
dt,

dtq
| | oo | =]

dt,  g¢; dt2
semantic | ! leosl |

dt3 dt3

syntactic

dat3

time

(C) IDEAL DISTRIBUTED COMPILER

Page 145

‘.

'@
.

-y

ot e ta

]
;

@
ia




ey, ML SRR it el i st Sk i 2l ST L R SR PR S - S L A

' Ga’ G s S a N ania Nl o r_i'.."';";'.‘;'},-\-' ".'..'.-_.{. RCEAS AR S e s .

Page 146 References

REFERENCES

[E1-D79] El-Dessouki, O., W. Huen, and M. Evans, "Towards a Partitioning Com-~
piler for a Distributed Computing System," First International Con-
ference on Distributed Computing Systems, October 1979, pp.296-304.

~
N
2 [Ens178] Enslow, P.H., "What is a 'Distributed' Data Processing System?" Com-
4 puter, January 1978, pp.13-21.

[Gord79] Gordon, R.L., W.W. Farr, and P. Levine, "Ringnet: A Packet Switched
Local Network with Decentralized Control," Fourth Local Network Con-
ference, August 1979.

Lo
ﬁx; (Huen77] Huen, W., O. El-Dessouki, E. Huske, and M. Evans, "A Pipelined
DYNAMO Compiler," Proceedings of the Tth International Conference on
Parallel Processing, August 1977, pp.57-66.

[Kieb81] Kieburtz, R.B., "A Distributed Operating System for the Stony Brook

B0 Multicomputer," Second International Conference on Distributed Com-
e puting Systems, April 1981, pp.67,79.

o )

s [Neil79] Neilson, P.A., The Primenet Guide, Prime Computer, Inc., June 1979.

[2imm81} Zimmermann, H., J.S. Banino, A. Cariston, M. Guillement, and G.

Morisset, "Basic Concepts for the Support of Distributed Systems:
The Chorus Approach," Second International Conference on Distributed
Computing Systems, April 1981, pp.60-66.

'l ‘I
Y PRI ¢

.
L}

’
r..

X ¢ 4

Sl A
.
O]

RPN XA RN i

AJ.J‘

LI
£

d

»

- 4

A

" U'J

. @

RS

. . S
e e e s e, RPN
N e T TN _.~:.x;.~ PSR T
AR SR KOS RN SR - e '_-.'.i

<, S . ] .-'- ‘.. ---- ".' ‘_, o .-“!q~ R ; PR { . ~'.‘..'.' T
\.&'\ ALV O ‘ﬁ.a _1".3".4 ‘a)_g SRy MA:.L'.AEJ Y ‘A}.A.}‘-_' A}L“.L.A\,A‘A_A IS IR



NN R P i et AR A A adatada Bt p kRS it AR AR RS AGA At RUbs AKRSSESE S
N -
s Appendix H CLOUDS Page 147
DS
'v-:.\-.:
O
-
o ) APPERDIX H
( Architecture for a Global Operating System
YN
::.}:, M. S. McKendry, J. E. Allchin, and W. C. Thibault
-_'\‘
o
N School of Information and Computer Science
) Georgia Institute of Technology
- Atlanta, Georgia 30332
i
R ABSTRACT
Sil ) . o The concept of a global operating system embraces
o Global operating systems are suited to distributed, these requirements (Jens82] [Lamp81]. In a global
N local-area network environments. A decentralized operating system, all resources are managed and
e global operating system can manage all resources allocated globally. The physical locality of a resource -
.’-.:: globally, relying on functional requirements for whether local or remote, for example - is not inherently
I~ ) resource allocations, rather than the relative physical a rart of the decision process. Decisions can be made
-,{",‘- locations of the resource allocation mechanism and solely on the basis of cost factors and logical
R the resource itself. Among the advant.ages of global constraints, rather than physical locality.  For
S operating systems are the ability to use idle resources example, assignment of a processor to a process might
o and to control the environment as a single cohesive be performed on the basis of code file location, expected
v entity. This paper introduces an architectural /0, expected CPU utilization, and current processor
St approach to supporting decentralized global operating and network loadings. j
B systems. The approach addresses the problem of RSy
oS mana%ing distributed data by incorporating O,
A specialized data management facilities in the kernel. Transparency appears to be a key quality in the A
o his data management is especially useful to the architecture of a decentralized global operating A .\]
S operating system itself. A capability-based access system. This has two main aspects: REPEIRY
{ scheme provides flexible control of resources and P
AYAD autonomy. The approach is being utilized in the 5;.—_&—}
SRS Clouds operating system project at Georgia Tech. Resource Access: Boundaries between .;{‘}:‘_.'
t‘ ; machines should be Rt A
20 transparent during access to S
Ty resources if desired. This is ..::-.:r\'_
- provided by many existing -_('\_).\'
, inter-process communication Wit
s 1. Introduction mechanisms (e.g., (Rash81])). .."_,_"-; ‘
2 !
O, Increasingly, the computers within an organization Decision Apparatus: 'l!‘heu ref!atxve. physical el
Ry consist of a heterogeneous Froup of machines linked by ocg ;)‘ns of a policy apparatus DRSS
BN high sgeed (yet relatively inexpensive) local area and the resources it controls S
b networks. Mainframes, office stations, scientific should be transparent to the TS
P workstations, personal machines, and even real-time policy apparatus. To do this G490
T~ controllers may participate in this internetwork of efficiently may also require
A machines. In many such environments, it is desirable that data describing resources
S that users view the entire decentralized resource pool be accessible independently of
e as a single computing resource. Users could then be its physical location.
i shielded from multiple user interfaces and relieved
! from having to decide how best to accomplish objectives . . L.
! using the available resources. Given a system supporting transparency in its access to
- resources and its decision apparatus, construction of B
DUN arbitrary groupings of resources is simplified, as is ——
“f~ In effect, we want to hide the decentralization of the allocation of resources on a global basis. These A
(OAY resources from users, so they do not have to be ualities are not necessarily easy to achieve, however. .r:.-;.-
ALY concerned with which particular resources are used to or example, for a decision apparatus to operate LAY
e accomplish their objectives. Furthermore, we need to independently of the resources it controls, it may need PSR,
.';-P‘ group resources for the purposes of autonomy and the ability to "back-up” if a remote processor fails after pA
@t protection, whether the resources in question are files, Thi K . A
machines, or logical services. For a completely general [ Noval Ress ’“':“”I‘“d in p.“.'" under contracts from the Office '
Las, facility, support for arbitrary (possibly intersecting) of Naval Research, N00014-79.C-873 and the USAF Rome Air
.:\:, groupings of resources is needed. Development Center, F30602-81-C-0249.
\ .
f
Q. +
‘E *This paper is to appear in IEEE INFOCOM 83, San Diego California, April 1983.
~
HCSLSTURNRN
p AR LS

" »
A f\- o .,d'\
AW ) W

N v .



-
)
o

e ey sV aginnd
o _'I..-

.
s, v'e

PR R T A
-’-.-'l’n -{0
. 4 3 L .
PP RN

“a

AN
AL TNk

‘XA
"‘-_“b\

»

VI..':';. 19’

i A St e Paio e DA i S i S R R ARl

LA

Page 148

a decision is made. Furthermore, decentralization
requires that decisions be made on the basis of
heuristics or probabilities, using out-of-date or
inconsistent data [Jens81).

In this paper we introduce a structural approach, or
architecture, for a system designed to support
decentralized ilobal operating systems. In this
approach, which is still being refined by the Clouds
project at Georgia Tech, we take the view that kernels
provided to support the operating system on each
machine should provide the uniformity and
transparency required. Using the object model (data
abstraction) as a basis, we intend to provide a
sophisticated database management system within
xerne's, but leave the specific details of aspects such as
synchronization, recovery, and atomicity to the
designers of the operating system (the client system)
that utilizes the kernels. The kernels provide
mechanisms to implement these requirements without
spe(éifying policy of how the mechanisms should be
used.

The paper discusses the goals (Section 2), requirements
{Section 3), and architectural concepts (Section 4) for
this approach. The approach is being implemented in
the Clouds operating system, which will run as a
na‘ive operating c¢ystem on all participating machines.
The environment assumed is a group of machines
connected via an internetwork of high-speed
(inexpensive) local area networks. For practical
reasons, Clouds is being implemented initially on
homegeneous machines: the Three Rivers Per
f{3RCC82]. The Perq is a scientific workstation o
minicomputer capacity. We are using 10 Mb/sec
Ethernet technology for the local area networks.

2.Goals

The environment we are considering has been
characterized as a Fully Distributed Processing System
(FDPS). According to Enslow {Ensl78], an FDPS
exhibits the characteristics of a multiplicity of
resources, physical distribution, unity o? control,
network (location) transparency, and component
autonomy. The prima oal of the architecture is to
support a reliable, unified computing environment so
that these characteristics can be fully realized. In this
sense, the architecture could form the basis of a
distributed timesharing system. While such
constraints as "one user per workstation” might hold at
various times (making some decisions trivial), the
system can take responsibility for all selection and
assignment of resources to users. Note that an
architecture can form a basis for many different
systems, not just the traditional “general purpose”
systems. Systems supported might include distributed
process control, for example.

Two secondary goals are apparent. Firstly, as in
conventional operating systems, the architecture
should facilitate high resource utilization within
performance constraints such as response time or total
cost. Secondly, it should help users to access or create

CLOUDS

Al A AR IL S S B8 YA SREL EF L UL AL PGS ) SL AL SNEL SPE L EINL I SR SN SR CTL IR AP ACTERTR AT TP AP LRI O
L T e T R T . .

Appendix H

services that are common to conventional systems and
services that are peculiar to distributed systems. Many
of the requirements of application programs for these
services are shared by the operating system itself,
which attempts to provide reliable service despite the
possibility of machine and network failures.

Qur final goal is to provide tunable autonomy--
dynamically configurable domains of resource control.
A tunably autonomous system could provide a variety
of resource allocation schemes, varying from highly
autonomous systems, to the equivalent of tightly-
coupled multiprocessing, where decisions affecting one
machine can be made by any other machine. Tunable
autonomy facilitates construction of logical resource
groupings at multiple levels. For example office.
department. division, company, and inter-company
levels might be established, with differing autonomy
and sharing constraints at each level.

3. Requirements

Two issues, data management and resource
management, stand out as fundamental to the Clouds
architecture. Only the mechanism for resource
management has to be provided by the architecture,
but requirements for effective and efficient resource
policy must be given consideration.

3.1 Data Management

Data management is a ubiquitous problem in computer
programs. The problem is particularly severe in
distributed systems. Conventional operating systems
contain a plethora of structures represeiting system
state. A global operating system must dc the same,
and must also deal with additional issues including
increased concurrency, partial configurations, and
failures and associated recovery. Each nod: must be
able to access both local and remote data. Considerable
research has been expended studying general problems
encountered in managing distributeg data, but little
attention has been paid to problems peculiar to
decentralized real-time systems. As a consequence,
special solutions tend to be reinvented for each
application system (e.g., (Birr81)) and for each part of
the operating system.

Conventional database research usually assumes an
application environment in which data consistency
(defined through serializability) is of prime
importance. However, serializability is applicable
mainly ‘'when independent activities compete for
resources--it is not suited to cooperation between
processes, such as is achieved through message-based
interprocess communication. Thus it is necessary to
deal with an orthogonal structure of atomic actions
which can be the units of recovery and concurrency
Further, one of the attractions of serializability is its
simplicity in the absence of semantic information
concerning data accesses. This simplicity is obtained
at the cost of concurrency though. and in an operating

PRI

TR )




-“J\:
Appendix H CLOUDS Page 149
system considerable semantic information is available
concerning both the accesses and the operations on the network
data stored. This information can be exploited to
improve concurrency, and thus availability and
performance. serial |-
user fileb
. Due to the scope of distributed data management /
e requirements, data management takes a prominent cos
SO place in our architectural approach. Distributed data
oA management can be made quite sophisticated,
" supporting failure atomicity, conmsistency conditions o 8
? including (but not limited to) serializability, creation
- and location of data objects, synchronization of access A
N to data, replication of data, and invocation of
X operations on data. It can also provide a basis for —
(ol system synchronization [Allc83]. :
‘.s.":_'
-
-~ 3.2 Resource Allocation ¢
program
-. - Consideration of resource allocation requirements is P \
e critical to the success of a global operating system
AN architecture. Ideally, an operating system should take random access
50N complete responsibility for the allocation of resources file ¢
e to a user, if the user so desires. The architecture must
SN provide facilities to support this allocation control.
o Figure t.
. T Consider the example depicted in Figure 1. A user
SRR directly connected to machine A, wishes to run a . ) . . L.
program p, which requires serial access to file b ability to assign them effectively will be limited by out-
S currently on machine 8, and random access to file ¢ on of-date and incomplete information. Machine states
SO machine C. The operating system must determine change rapidly, so a perfectly consistent description of
A which machine should provide the computational the state of an entire system cannot be achieved
, resources necessary to run p, and whether any files without paggng a high performance penalty. As a
\ i should be relocated beforehand. Factors involved result, reac| ing a decision myolvesamore heuristic or .
R include user-speciﬁed. constraints (e.g., 'fast’, or probabilistic approach than in a conventional, single v
e ‘cheap’), optimization of particular resources (e.g., processor system.  More historic data to assist
"'xf device channels, processor time, network bandwidth), prediction can help, though; a system could keep
o current loads, and interactions with other programs. extensive statistics of past activity. For example, if file
WA The program p may run on machine A, but unlike ¢ in Figure 1 is known to be small, and program p
- many conventional distributed operating systems (e.g., =~ typically makes extensive random access to ¢, the o
) {Rede80)), this is determined heuristically at the time operating system might decide to either relocate ¢ to :
. of request; it is not a default. Thus, we are advocating machine A, or to run p on machine C.
}P_ . a more "intelligent” approach to resource allocation.
:'\ A second concern of the decision process pertains to
'x"ﬁ-. 3.2.1 Tunable Autonomy decilsions tetg“'l’ ha\lre be;n madet.h but cbannot dbe
implemen d. Toa imited extent, this can be avoided A
LZ' The term tunable autonomy characterizes the ability by preclaiming resources, but the problems of failures Lol
s to construct arbitrary logical groupings of resources for ~ cannot be avoided. If a machine fails, it may be i
KN the purposes of management. A single group of impossible to implement a resource policy decision. In
DA resources, or resource pool might contain one or this circumstance, the policy apparatus must try again, DEN
:.‘b'." many resources, may intersect or contain other !)asmg tl.'le next atbempted ecision on more recent ':‘-':'.':'
..-:.-: resource pools, and can extend across arbitrary information. e
Ny machines. Once a resource pool is defined, decisions
‘\:’ concerning the resources within it can be made by anr 4. Architectural Directions
ki processor (or program) granted coatrol over that pool,
d regardless of physical location. Within this . L.
YR framework, allowing each physical machine to be In many operating systems for distributed
YN autonomous is a constraining case, but not the only environments, a kernel provides primitive operations
SO possible case. for inter-process communication (IPC) via messages
o (e.g., [Rzla‘s 8hl]). We int.e:lxd to take : raiicallly different
AR - approach, however, adopting the dual structure
;-.:’_': 3.3.2 The Decision Process Efnue’lQ)}. b Tltxse artclhibect:uretl supgorts processes,
a assive) objects, and invocation of operations on
or¢ While a decentralized global operating system should O%je_cts. Act}on.s_(grouﬁings of_ipvocatioﬁn.s) provide a
: J_: have considerable freedom to assign resources, its basis for reliability. The primitive facilities provided
N
‘¢-cd
CAC]
5948
- o
o,
‘.D -
> 5

.\
ety

[




7> Page 150 CLOUDS Appendix H
A
T |
.“‘- ; chent system
(1‘:. : pohey
- ! control
( !
N t
|
T i
o i capability
N ! lst .
W i te-list) -
O : .
' Architectural s 'e.q
- 1 operations Inter(ace .
NN ‘ ! ! B N\ RS
« Y00 77 7 Z 07 SR O T, . -~
’ . K
: 1 —d--t-¥4------------- H{----F--3- 8 g
XN ! object E object object , ohject . 'E;\
" At i| a3 Bl |1 B2 AR
"~ ' : et ._-\‘
: . A H e
N . clist ‘ 1 v .
e ; object : : B P
. ! A2 L. 8 RN § P J I
.':\ resource e
N e
N7 ‘ Y et
N ! % Sy
o | BRAARS
— T
\ - - .
y | OMS (objects & actions) ALY
3
o ? Keroel support for OMS
o :
:.I: primitive inter-machine communication
S 1
\:_- | Machine A | Machine B |
\ |
\:' l . . Local Area Network
A | Figure 2. Conceptual Vicw of the Architecture
-f‘::w'
o’
.‘:‘
e by the architecture use a variety of remote procedure Kernels run processes and maintain objects. However,

call semantics which vary in dimensions such as
reliability and asynchrony [Spec82). A section of the
kernel, called the object management system (OMS),
implements calls on objects. Access from processes to
objects is via cafrabilitles, which are protected system
names managed by the kernel. Capabilities can be
passed as parameters when operations are invoked;
they can also be returned in a fashion similar to
function values.

be-ause this is at the instigation of higher level
software, conventional message-based inter-process
communication is considered to be part of the client
system, as is the resource allocation policy apparatus.
hese characteristics are, in fact, highly desirable
features, because they allow client-specifiable inter-
rocess communication, and permit a high degree of
exibility in resource policy. xmethod of using objects
to implement interprocess communication via

messages is shown in Figure 3.

2k |

:::{. ’tll‘he keri:\el Xill rolvide thle lovlver l;ve!l‘s (:g a functigna}}
EE ierarchy. At the lowest level is the hardware, whic
o we consider to include access to a local area network. 4.1 Data Management
ot At the level above the hardware is the primitive inter-
AN machine communication used by the individual kernels The object management system consists of two primary
O to communicate with one another and to maintain the components: objects and actions; both are user
~ object management system. Data and process definable {AllcB2) [AllcB3]. Objects are passive entities
f\" management mechanisms then complete the kernel (modified abstract data types) which are accessible
S and the architecture. Thus, the combination of services only through interface procedures that define
Ao >, provided by individual kernels implements the operations on the objects. Actions are ordered
1' architecture for the complete system. Above the collections of operations on objects which require
na kernels are client levels to provide policy for the certain properties (e.g., failure atomicity) to hold
P architecture.  Finally, user processes implement throughout the life of Sxe action. Both object recovery
applications. A pictorial representation of the and synchronization between actions are controllable

architecture is shown in Figure 2.

by the object itself (i.e., programmed within the object).

7 -

s Y
AN
% % s v Y




SN

()

LA

st P Y
PR AR

L
N

’

U3
LA

- »
a’a

.
o

&
L]

)
s

‘

[ *l’iu‘l’l‘

o2,

-y

P X W YN

-

Appendix H

Thus, for example, weaker forms of consistency are
allowed, depending on the semantics of an object.
Actions can be carried out by single processes or
cooperating processes.

An extended Pascal language allows object classes to
be defined, and the object management system
supports objects at runtime. Once created via object
classes, object instances are controlled through
requests to the kernel using OMS primitives, such as
create object, destrcy object, create action, destroy
action, commit action, and invoke operation. Object
classes are exported, so object variables can be typed
automatically in a manner similar to Pascal pointers.
Thus, the object management system can be viewed as
a globally distributed heap containing long-lived
objects. For transparency, all actions communicate
only with the OMS at the node where the process
implementing the action resides (not shown in the
conceptual view of Figure 2). The OMSs, in turn,
communicate using specialized protocols for inter-
machine communication. They cannot use the general
IPC facility, because they form its basis.

A primary goal of the OMS is support for network
transparency, wherever desired. This transparency is
provided by making operation invocation uniform,
regardless of whether the subject of the operation is on
the same machine as the client invoking the operation.
The operating system is thus free to distribute
processes and objects without their knowledge (unless
specifically directed not to do so). Thus, languages for
distributed computing, such as PRONET [Macc82) or
Argus [Lisk82) can be well supported.

4.2 Resource Management

Because this paper is concerned primarily with
describing an architectural approach, we will not
discuss resource management in detail. The basic
approach is to use the capability-passing mechanisms
provide by the object management system to construct
capability managers [Kieb78). Due to the
transparency implemented by the architecture,
capability managers function independently of their
location in the system. Since all invocations of
operations are via capabilities and possession of a
capability is taken as permission to invoke an
operation, there is no structural association of
particular machines with particular decisions. Any
object that possesses a capability to implement policy
decisions can implement those decisions. For example,
each machine might contain a process-management
object whose function is to instantiate and destroy
processes on that machine. Any object that possesses
capabilities for the operations of this process-
management object can then create and destroy
rocesses on that particular machine. The capability-
gased access scheme makes it unneccessary to have a
"special state” for resource managers--any object can
become a resource manager, thus making it possible to
construct arbitrary pools of resources independently of
machine boundaries. Of course; a choice of appropriate
capability-passing primitives is critical to the success
of this approach (Snyd81].

CLOUDS

Page 151

sender port object recipient
process (p) process

message

object capability bist

Figure 3. Implementation of Ports

5. Summary

This paper has introduced an architectural approach
for decentralized global operating systems in an
environment of machines connected via an internet of
high-speed local area networks. A global operating
system manages all resources globally, without
making distinctions between local and remote
resources. One characteristic desirable of such systems
is tunable autonomy: the ability to construct
arbitrary logical groupings of resources for the purpose
of management. Such groupings are independent of
machine boundaries.

A major motivating factor in the design of the
architecture is the need for reliable data management
in the low levels of the system. This can be achieved
efficiently by making some constraints, such as
serializability, optional according to particular needs.
Requirements for global resource maragement also
motivate the operating system architecture.

The architecture described provides processes and
objects; invocation of operations on objects is perf:.med
through capabilities. Objects are maintainec by the
abject management system, a component of thie kernel.
Despite its integration into a low level of the operating
system, the object management system is quite
sophisticated, providing an action environment in
which actions may initiate, commit, and abort, with
appropriate effect on object states. To assist
performance and reliability, the object management
system supports variable recovery, synchronization,
replication, and consistency conditions including (but
not limited to) serializability.

From the base architecture, message based inter-
process communication and a resource policy apparatus
can be constructed. The capability-based invocation of
operations on objects makes it possible to construct
resource managers as capability managers. Arbitrary
objects can manage capabilities, depending on the
capability-passing  primitives of the  object
management system to provide the neccessary access
control. Thus, resource pools can be constructed
dynamically, and can exist independently of machine
boundaries.

e ¥t 1 2ty



e A e e e A G AEAT AN SR /AT AL UMM AR A A ARSI R EACH S hE L R B R S
-\‘. BRI - o - . - [
£
L Page 152 References
2
't-: 6. Acknowledgements (Laue79]  Lauer, H.C,, and R.M. Needham, "On the
- o Duality of Operating System Structures,”
. The authors would like to acknowledge contributions to In Lanciaux, D., Ed., Operating Systems: B
) Clouds work by B. Maccabe, R. LeBlanc, P. Enslow, N. Theory and Practice, Amsterdam: North- n
Griffeth, M. Merritt, N. J. Livesey, R. Mays, and other Holland, 79 5
participants in the Georgia Tech FDPS program. :1
¢ B
@ [Lisk82] Liskov, B. and A. Scheiffer, "Guardians y
A ’ " .
A 7. References and Actions: Linguistic Support for -
ol Robust Distributed Programs,” 4
o Symposium on Principles of Programming -
Fo Languages, ACM, January 82.
{3RCC82] Three Rivers Com&uter Corp., Per
, System Software eference Manual,
> Pittsburgh, Pa., May 82. i {Macc82] Maccabe, A.B., and RJ. LeBlanc, "The
. Design of a Programming Language
. Based on Communication Networks,”
[Allc82]) Allchin, J.E, M.S. MgKendry. “Object- Proceedings of the 3rd Int. Conf. on
Based Synchronization and Distributed Computing Systems, Miami,
Recovery,”.Georgia Institute of 82.
Technology GIT-?CS-82/ 18, September 82.
. (Rash81] Rashid, R.F, and G.G. Robertson,
{Allc83]  Allchin, J.E., “Synchronization and “Accent: A Communication Oriented
Recovery in Distributed Systems,” Network Operating System Kernel,” Proc.
Georgia Institute of Technology, Ph.D. p. on Operating System
Thesis, in preparation. Principles, ACM, December 81.
{Birr81] Birrell A, R. Levin, R. Needham, and M. {Rede80]  Redell, D. D., Y. K. Dalal, T. R. Horsley,
Schroeder, "Grapevine: An Exercise in H. C. Lauer, W. C. Lynch, P. R. McJones,
Distributed Computing,” Proc. 8th Symp. H. G. Murray, and S. C. Purcell, "Pilot: An
on Operating Systems Principles, ACM, Operating System for a Personal
December 81. Computer,” CACM, Vol. 23, No. 2, pp. 81-
92, February 1980.
{Ensl78) Enslow, P. H., Jr., "What is a 'Distributed’
Processing System?” IEEE Computer, (Synd€1]  Snyder, L., "Formal Models of Capability-
pp. 13-21,January 78. Base? Protaction Systems”, IEEE Trans.
on Coimputers, vol. C-30 No. 3., pp. 172-
L. 181, March 81.
[Jens81} Jensen, E.D., "Distributed Control,” In
Lampson, B., Ed.,Distributed Systems -
Architecture and Implementation, Berlin: [Spec82] Spector, A.Z., "Performing Remote
Springer-Verlag, 81. Operations Efficiently on a Local

(Jens82! Jensen, E.D., "Decentralized Executive
Contro! of Computers,” Proceedings of the
3rd Int. Conf. on Distributed Computing

Systems, Miami, 82,

fKieb78] Kieburtz, R.B.,, and A. Silberschatz,
"Capability Managers,” IEEE Trans. on
Software Engineering, Vol. SE-4, No. 6,

pp. 467-477, November 78.

[Lamp81] Lampson, B.W., M, Paul, and H.J. Siegert,
Eds., Distributed Systems - Architecture
and I[mplementation, Berlin: Springer-

Verlag, 81.

N

EA I T S
EPEC A AR AT V. GO

.-.-.._“-,.__.-__ R .'}(--- T
.5 N LR L L IR PR G :

Computer Network,” CACM, Vol. 25, No.
4, pp. 246-260, April 82.



L.~ Appendix I Replicated Data Page 153
NSNS

oo

4

e APPERDIX I

(i ALGORITHMS FOR MAINTAINING REPLICATED DATA USING WEAK CORRECTNESS CONDITIONS
W

T2

ol

e James E. Allchin
o

3

R

_:v'.;-:

N Abstract

N

o A suite of decentralized algorithms for maintaining distributed replicated data is presented. The
e algorithms do not necessarily achicve serial consistency, but they are adequate for many simple data
A storage problems in operating systcms and realtime systems. Applications which appear well-suited
-;::'-' to the suite include mail systems, naming servers, appointment calendars, certain types of file
e dictionaries, operating system load tables (e.g., routing), and device stale in distributed process
ey control systems. The algorithms are robust and are intuitively easy to understand. The algorithms
5 assume an unreliable network and tolerate node failures, network partitions, lost, duplicate, and out-
e of-order messages. Both goals for replicating data--high availability and rapid response time--are
AN mect by the algorithms. The basic algorithms use resolution tables to state the outcome of conflicts
\f._\: between concurrent actions. Each algorithm is oriented toward different application requirements
‘:,. K and provides a different degree of message traffic overhead and availability. The efficiency of the

algorithms depends on the acceptability of weak correctness conditions in the applications. The
desired correctness condition is formully stated and the basic algorithm in the suite is proven correct

U . . a~a e
Wi e a ™o """ r‘.- [l Fadl Wl
LS S S A ) '

i \l'\!' \f\:\'. :\i‘x,'-: :\ '

- (RS Y0y )y q"\-

WAL AN SQF B A




L

;'TT"‘

F.? ,'.-'- -
AN
a %A v,

?

'I

: '. I. " »
RN

)
2

L%

197

Page 154 Replicated Data Appendix I

1. Introduction

The correctness condition usually applied to data storage systems states that the result of any set of
transactions executed should be the same as some serial execution of that set of transuctions. This
serializability-based correctness condition assuimes only that transactions exccute correctly if run
serially. Distributed systems containing replicated data require relatively complicated algorithms to
achieve serial consistency and still obtain acceptuble performance. These algorithms restrict
concurrency in order to achieve consistency. In certain applications, however, serializability as a
correctness condition is not required because the results for some class of non-serializable executions
of transaction steps are correct. See, for example, [Lamp76], [Kung80l, and (Garc80] In addition,
there are applications where even though the transactions desire to see a serial view, they will accept
some class of non-serial views and consider these views correct as well. These applications will accept
non-scrial views in return for certain advantages not possible if strict serial consistency is enforced

Performance [Jens82, McKe83], availability 1Fisc82], and simplicity {Oppe81} have been cited as
encouragements Lo weaken correctness. Thus, there is an interesting class of application areas for
which trading serial consistency for high availability, increased performance or algorithm simplicity
is warranted.

There arc many approaches for supporting copies of replicated data [Bern81]. Most of these maintain
serial consistency. However, maintaining scrial consistency across network partitions (caused by
assumed failure of the communication system) defeats data availability, since at least one copy
cannot be used und in the worse casc, only one copy can be used. If weak consistency can be tolerated,
then it is possible to overcome this problem. [lowever, resynchronization of the data copies must still
be addressed during node restart or network merge following a partition. Contending with these
issues in an unreliable environment complicates the solutions still more. Algorithms which handle
all of these issucs tend to be complen, using a variety of expensive handshaking protocols.
Establishing that these algorithms are correet, under all the possible failure conditions, is generally
quite difficult.

In this paper, we present a suite of decentralized algorithms to maintain distributed replicated data
with weak consistency. Algorithms from the suite can be customized to balance particular tradeofTs
required indifferent application systems. The ulgorithms assume an unreliab’~ network and tolerate
lost, duplicate, and out-of-order mes==agces, node failures and network partiticns. Both goals for
replication--high availability and rapid response time--are met by the algorithms. The basic
structure of the algorithms depends on resolution tables to state the outcome of conflicts between
concurrent actions. Each algorithin is oriented toward different application requirements and
provides a different degree of message traffic overhead and data availability. The eMiciency of the
algorithms depends on the acceptability of weuk correctness conditions in application systems.

Work which is similar to ours is discussed in (Fisc82{, [John751, ([Oppe81], und { McQu78{ Most of our
problem formulation is based on Fisher and Michael {Fisc82]. Unlike their approach, though, we do
not require each node to transmit the entire node’s view of the database whenever communication
occurs: only the changes to the view are sent, and regardless of the number of deletes and duration of
failure, no node need maintain an unbounded list of changes relative to the databuse size (assuming
the database is itsell bounded). We believe that in particular cases (e.g., small sized databases)
passing the entire database is appropriate while in many other applications, this requirement is not
acceptable.

Our work is particularly interesting because we use resolution tables which allow eusy visualization
of the conflict resolution strategy and we provide a forma! proof of one algorithm from the suite (with
other proofs following in a straightforward manner from the framework presented). Further, it isour

A AR ‘b"f\JWJ\ Mo Y LN
Oy ‘\"::*::-"n‘?f}-‘:ki\:'it:x \':.":" f.‘.-
. ALY

n h.\_- AN
AGRWATAY

.
L % e ® .
w




pe

LA
LSRG Y A A

A N
ry ".- B

g

¥ «
PR

‘l ‘l*%

Appendix I Replicated Data Page 155

belief that the suite of algorithms address a wide range of important problems in a clean and efficient
manner. Allchin [Allc83] contains additional information on the desirability of supporting both
serializable and non-serializable synchronization facilities in decentralized systems (in particular
operating systems). Specific programmer-oricnted tools for controlling atomic action synchronization
and recovery are also presented.

2. Environment and Application 1Jomains

The general environment assumed by the algorithms involve some collection of nodes arbitrarily
connectled via some communication system. The communication network and nodes are considered
unreliable; that is, both may fail either partially or totally. Messages if delivered, however, must
arrive ungarbled. That is, message corruption must be detectable. In addition, it is assumed that the
nodes and the network do not manufacture messages which violate the protocol of the algorithm.

Each node contains a view of the entire database which may or may not be current depending on the
state of communication activity. It is later proven that with sufficient reliability and assuming
changes to the data cease, then all views will converge to contain the same data. That is, the views
arc mutually consistent [Thom79].

Each view consists of a set of elements. item names and associated values. Clients manipulate views
by specifically referencing (via names) particular clements in the views. There are four operations
which manipulate a node’s view. These eventually alter the other remote views (if the changes ure
not superceded before the other nodes lcarn ol the first change). The four basic operationsare

Insert(x,y) adds an ¢lonent with name x and value y
Update (x.y) replaces the value of the element with name x with the value y
Delete(x) removes the clement with name x

List(set of namves) returns an ordered pair of element names and values for all elements
requested which exist in the local view at the time of the operation

FFischer and Michael [Fisc82] referred to 1 very similar environment and operation structurc as a
distributed dictionary problem. In fact, the main difference is that we include an Update operation
This is an important change, not simply a trival extension. This is true because we also require
basically the same two restrictions:

R;. Neither Updatefx,v) nor Deleteir) can be performed at node i unless the element x is
in the local view at node 1.

Ra. All item names used in Insert opcrations must be unique.

The sccond restriction explains why the inclusion of the Update operation alters the problem's
structure. An Update is thus a primitive operation which can not be formed from Insert and Delvte
operations. These restrictions are required by the algorithms and are quite reasonable in the
application domains discussed below. R, is quite intuitive since operations by definition must name
elements from the local view. Rg provides the assurance that once an item name has been deleted, it
can not be reinserted. This avoids a conflict which would require some additional means to order the
Insert and Delele operations (conflict resolution). Throughout the remainder of this paper a change
refers to either an Insert, Update, or Delete operation.

A

e

[ 2
'l ‘I." ""l .“ '

.

R N I
) e



»

v R .
LR S )

.
."’. ". s '.. "- "c

A
) a0, 1, 801, 4
AV

-
‘e
L)
A

s
% ° .‘

- My

l‘l

4 % LY

.
L]
LA AP A

pa
.'

KRR P
"‘l. ’

» , {"'

.
.
I.'."..'.’ -

£ 4

A

Page 156 Replicated Data Appendix I

There are two additional operations: Transmit and Receive. Transmit is used by a node to send
information concerning its view to other nodes. Receive is automatically invoked when a message
containing information from some other node is received. No information flows between . views
unless Transmit operations are issued by a client The frequency of Transmit operations dictate how
current a particular view is for some node. It is picsumed that clients will issue Transmit operations
often cnough so that views will converge acceptably often for the applications.

All six operations must be non-interfering when manipulating the local view. Regardless of the
method used, atomicity with respect to concurrent activity among the operations is assumed
Because the maintenance of the view should be relutively inexpensive for many applications, mutual
exclusion may suffice.

The operations and associated restrictions presented above appear to be sufficient for several
application areas. Applications which include problems related to maintaining some form of
replicated dictionary mesh well with our approach For example, some distributed applications which
include this Lype of problem are mail systems, numing servers, file directories, appointment calendars
and operating system load data maintenance (v ¢ . routing tables). In addition, applications like
process contro! systems which alter data valucs rapidly, but do not require serial consistency can also
be ~upported  These applications tend to be ~elf conrecting in nature and do not necessarily require
~erial consistency

3. General Suite Structure

We divide databases into two types: independent and dependent.  Independent datubases permit
clements to be changed by any node in the network. Thus once a data item name has been created, it
can be manipulated by any node in the network. flependent databases permit elements to be chunged
only by the node which created the data item num+ That is, changes depend on which node was the
ilem’s creator. :

We also consider two levels of fault-tolerance: propagation and no propagation. Propagation implies
every node must guarantee all other nodes receive a change, even when a node is not directly
responsible for the change. Thus, even if the node which makes some change fails (or outward
communication from the node fails) the chanue can still propagate through the network, depending
on the stute of the other nodes and remaining communication system. This approach implies that
data availability is more significant than message traffic overhead and local storage space. The
information regarding the change is stored at cach node until that node is sure every other node has
scen Lhe result of that change. No propagation implics thut only the node responsible for performing
a change must ensure that every other node has received the change.

The message distribution procedure is not specified in the suite, since the network tapolugy and
availability requirements dictate how messages are actually distributed throughout the network.
Messages could be broadcast, multicast, or simply sent to some next node.

The structure of the suite consists of u base algorithm and resolution tables to specify algorithm
actions when changes occur locally or are received from a remote node. There is a different resolution
table for each combination of database type and fault-tolerance discussed above. The base algorithm
need not be changed. In the following we present an overview discussion of the basic data structures
and hase algorithm. Then in Section 3.2 we discuss certain aspects of the algorithm in detail.
Finally, in Section 3.3 the base algorithm is presented together with the first resolution table.

3.1 Algorithm Overview

L S §

bl v
o oy e 10

.'.V B



L

P A ...
4.4 &

e, 8, ¢, 4 O
’

-~

. ’{':...

LR
- LA

‘D

oA
2L

N g ?"" <
Ps

3 l-b,‘l 4
[ W e

e x

» AP
s ¥ 9 « ’
<4

L

Tty

s

. --

KR AR

N
¥

ok

3 ",__\-"')

! ".,..
.‘~‘;

Appendix I Replicated Data Page 157

The basic algorithm is assumed to be replicated at all nodes. Three basic data structures are used in
the algorithm; each node has a separate set of these variables:

\'A the database vicw for node i.

SS; a list at node ¢ of changes which may not have been seen by the other
nodes. (SS represcnts a synchronization set.)

t, a timestamp array which details how current node i's knowledge is of

every other node.

Both SS and t are transmitted to some collection of remote nodes upon a client’s Transmit request. V
is not sent between nodes except during a cold start of a node; see Section 5.6.

When a change occurs at some node i, the change is reflected in the SS; and the database view V,. The
change is marked with the current value of a node-rclative Clock. Synchronization sets contain at
most one entry for every item name changed. A particular change may be superceded at any time,
either before leaving the originating node or at some later intermediate destination. Since a change
may be removed {rom the SS before all nodes have scen that change, another method is used to permit
a node to determine when the changes have been processed by remote nodes. The timestamp array t
is uscd for this purpese. This array is indexed by node number. The value of cach entry represents a
nodc-relative Clock number. For example, if /5] = 3, then this means that node i has seen the result
of ull changes from node 5 through time 3 (relative to nade 5). We use the term result here hecause
changes can be superceded in the synchronization sct at any time. Thus a node may never see certain
changes, it could see some newer change.

In the propagation approach a node i maintains an SS entry for every change entry applied to the
database locally until node i is sure every other node has received the change. When a SS arrives it is
merged with the local SS. FEntries may be added wr deleted to hoth V and SS according to the
resolution table. Removalof a change entry from u node’s S8 can occur in one of two ways:

case 1: A node can be passed a SS containing a change entry which has been seen by all nodes
except for the receiving node.

case 2: A node can receive a SS which does not contain the change item and the received t array
shows that the sending node has seen a result from the node where the chunge
originated at least through the time when the change occurred. Because the sending
node definitely has seen the change and does not have the change entry on the SS, we
know (by induction) that case | must have occurred at some node in the past. Thus the
change entry at the receiving node can be deleted.

In the no propagation approach, the node performing the change is the only node which maintains the
change entry on the SS. The other nodes perform the change, but do not change their SS. An
originating node i can determine when an cntry hus been seen by all nodes when it receives t urrays
from all remote nodes which reflect a time lor node i greater than the time when the change was
performed.

Aflter node i receives und processes some remote SS;, each entry in the local time array t, is set to the
maximum of t, and the remote time array received (t,). In essence, node i now has a view representing
both nodes i and j through the times given in the new timestamp array.

3.2 Details Concerning the Base Algorithm and Resolution Tables

In this algorithm, the Clock is assumed to provide real time. However, as discussed later, it is
possible to consider the Clock function as simply a monotonic strictly increasing function. Assuming

> e, e
e e S

ey e e s e

Aol
.'t't*'
SI@

: Py




Page 158 Replicated Data Appendix I

that the Clock function reflects time is particularly attractive since failures do not require special
corrective action to ensure the monotonicity property. This Clock property is stated below:

C;. Clockq + > Clockq for all executions q of the Clock function

It is assumed for this presentation that item names satisfyv restriction Rg by using unique names
gencrated by the Uniquename function. This, of course, is not required in upplications in which
duplicate names are impossible.

The procedure Resolve processes new synchronization scts against local synchronization sets. Every
entry in cach SS must be examined. If the other SS contains un entry with the same data item name,
then the two entries must be resolved and only one entry kept. Fake entries are created if only one of
the SS's contain a particular data item name change entry: sce the following paragraph. The order of
processing each synchronization set is unimportant, but an entry must be processed only once.

Resolution tables are used to apply two synchronization sets against each other to update the
database view and create a new synchronization set which includes the most current information
concerning changes The table format has been extended for simplicity to include rows and columns
to represent entries which may be present in one of the synchronization sets, but absent in the other.
This permits the resolution table to be used uniformly  There are two possible reasons why a
particular entry could be missing: the result of the change has already becn scen and removed or the
result of the change has never been scen. Fach axis includes the lines AbsentSeen and
AbsentNotSeen to represent these conditions. Refer to the procedure Resolve and the type and
variable definitions on the following pages for the definition and use of changeitem.

AbsentSeen ® there is no c¢ntry with the specified name in the associated
synchronization set tabsent from SS),
® and by the associated t we know that changes have been processed
through the valuc in the time array (seen by the node). That is:

t{z.cnl 2 z.ct, for some changeitem z

AbsentNotSeen ® there is no entry with the specified name in the associated
synchronization sct (ubsent from SS),
® and by the associated t we have definitively not seen the change
(notseen by the node). That is:

t{z.cn] < z.ct, for some changeitem z

The procedure Perform Action used in Resolve is simply a dummy procedure which represents
performing the actions defined in the resolution table on both 88 and V. Thus,

Perform Action (x,y,SS, V)

represents using the x.op and y.op fields (of the changeitems x and y) to select the appropriate X axis
and y axis array positions in the table. The actions specified at that location are then to he performed
onSSand V. (Note that a dummy x or y enlry is created if the item is missing from the corresponding
synchronization set; the op field is set accordingly.)

In all of the resolution tables presented below Update conflicts are resolved in favor of the higher
change time (ct); that is, probably the lutest change wins. It is possible that the latest change may
not win, though, because the different node clocks may not be physically synchronized. It is also
possible for two changes to be made at exactly the same time. This conflict is resolved by using a total
ordering on the node numbers. This algorithm does require that the Clock functions of the individual

f
L)
e N

P

ry

A

L TR, ey PR B BT e e e e g

SN
St

s

.2
[

.

s
.

'

ity _.\i

2
A

&

ERRL A N
a

s
i

/




2 o * -t
X,
PSS,

o™ .ﬁ"i 3,
O,
a8

2
vy o
A

:I‘n

‘ot

o
&
E!__{

Sy

!.l‘
afatle
.

LA
I

S
S hh

o

15
K

Appendix I Replicated Data Page 157

The basic algorithm is assumed to be replicated at all nodes. Three basic data structures are used in
the algorithm; each node has a separate set of these variables:

Vi the database vicw for node i.

SS, a list at node ¢ of changes which may not have been seen by the other
nodes. (SS represents u synchronization set.)

t, a timestamp array which details how current node i's knowledge is of

every other node.

Both SS and t are transmitted to some collection of remote nodes upon a client's Transmit request. V
is not sent between nodes except during a cold start of a node; see Section 5.6.

When a change occurs at some node i, the change is reflected in the SS; and the database view V,. The
change is marked with the current value of a node-reclative Clock. Synchronization sets contain at
most one entry for every item name changed. A particular change may be superceded at any time,
either before leaving the originating node or at some later intermediate destination. Since a change
may be removed from the SS before all nodes have scen that change, another method is used to permit
4 node to determine when the changes have been processed by remote nodes. The timestamp array t
is uscd for this purpose. This array is indexed by node number. The value of cach entry represents a
node-relative Clock number. For example, if 1|51 = 3, then this means that node { has seen the result
of all changes from node 5 through time 3 (relative to node 5). We use the term result here becuuse
changes can be superceded in the synchronization sct at any time. Thus a node may never see certain
changes, it could see some newer change.

In the propagation approach a node i maintains an SS entry for every change entry applicd to the
database locally until node i is sure every other nade has received the change. When a SS arrives it is
merged with the local SS. Entries may be added or deleted to both V and SS according to the
resolution table. Removalof a change entry from u nade’s SS can occur in one of two ways:

case 1. A node can be passed a SS containing a change entry which has been seen by all nodes
except for the receiving node.

case 2: A node can receive a SS which does not cuntain the change item and the received t array
shows that the sending node hus seen a result from the node where the chunge
originated at least through the time when the change occurred. Because the sending
node definitely has seen the change and does not have the change entry on the SS, we
know (by induction) that case 1 must have occurred at some node in the past. Thus the
change entry at the receiving node can be deleted.

In the no propayation approach, the node performing the change is the only node which maintains the
change entry on the SS. The other nodes perform the change, but do not change their S5. An
originating node i can determine when un cntry has been seen by all nodes when it receives tarrays
from all remote nodes which reflect a time for node i greater than the time when the change was
performed.

ARer node i receives and processes some remote SS;, each entry in the local time array t, is set to the
maximum of t, and the remote time array received (t;). In essence, node i now has a view representing
both nodes i and j through the times given in the new timestamp array.

3.2 Details Concerning the Base Algorithm and Resolution Tables

In this algorithm, the Clock is assumed to provide real time. However, as discussed later, it is
possible to consider the Clock function as simply a monotonic strictly increasing function. Assuming




m Page 158 Replicated Data Appendix I

that the Clock function reflects time is particularly attractive since failures do not require special
corrective action to ensure the monotonicity property. This Clock property is stated below:

Ci. Clockq 4+ > Clockg for all executions q of the Clock function
It is assumed for this presentation that item names satisfv restriction Rg by using unique names

generated by the Uniquename function. This, of course, is not required in applications in which ;j_'-:; :
duplicate names are impossible. RO

The procedure Resolve processes new synchronization sets against local synchronization sets. Every
entry in cach SS must be examined. If the other SS contains an entry with the same data item name,
then the two entries must be resolved and only one entry kept. Fake entries are created if only one of
the SS's contain a particular data item name change entry; sce the following paragraph. The order of
processing each synchronization set is unimportant, but an entry must be processed only once.

Resolution tables are used to apply two synchronization sets against each other to update the
database view and create a new synchronization set which includes the most current information
concerning changes. The table format has been extended for simplicity to include rows and columns
to represent entries which may be present in one of the synchronization sets, but absent in the other.
This permits the resolution table to be used uniformly There are two possible reasons why a
particular entry could be missing: the result of the change has already been seen and removed or the
result of the change has never been scen. Fach axis includes the lines AbsentSeen and

QS AbsentNotSeen to represent these conditions. Refer to the procedure Resolve and the type and
" variable definitions on the following pages for the definition and use of changeitem. AR

~e BRI A
3o RO
L::'J. AbsentSeen ® there is no cntry with the specified name in the associated ‘~”-\j.::'

synchronization s¢t (absent from SS),

fa el

> S

® and by the associated t we know that changes have been processed "ﬁ
through the valuc in the time array (seen by the node). That is: -_-"‘:'_“_‘-_‘ 1
-‘t\'-‘:.';

AL

t{z.cn} 2 z.ct, for some changeitem z

o
PR
AT

AbsentNotScen ® there is no entry with the specified name in the associated
synchronization sct (absent from SS), .
® and by the associated t we have definitively not seen the change

(notseen by the node). That is:

o
‘

t{z.cn) < z.ct, for some changeitem z

The procedure Perform Action used in Resolve is simply a dummy procedure which represents
performing the actions defined in the resolution table on both 8S und V. Thus,

Perform Action (x,y,SS, V)

represents using the x.op and y.op ficlds (of the changeitems x and y) to select the appropriate x axis
and y axis array positions in the table. The actions specified at that location are then Lo be performed
onSSand V. (Note that a dummy x or y entry is created if the item is missing from the corresponding
synchronization set; the op field is set accordingly.)

In all of the resolution tables presented below Update conflicts are resolved in favor of the higher
change time (ct); that is, probably the lautest change wins. It is possible that the latest change may
not win, though, because the different node clocks may not be physically synchronized. It is also
possibie for two changes to be made at exactly the same time. This conflict is resolved by using a total
ordering on the node numbers. This algorithm does require that the Clock functions of the individual



’
s -

..
3]

EA

[
»

o8
4
LA A

»
SOOE. .

¢ o .8 0
CORCINE AL
DA

A

-

pos

- - ’
[4
'S t ,:

hy .
)
4 ..{‘: ‘-‘ ': LI

o

=S

Y
RPN

.|..‘|;‘ .

S

AR

.

»
s

B ¥ . ‘.
'l “ .I' \ '. "
PP A

-
»

.. A, L]
XXX

.
-

. .;’.'

Appendix I Replicated Data Page 159

nodes be logically synchronized [Lamp78]. This is accomplished within the Receive procedure.
Section 5 discusses alternative methods for conflict resolution.

3.3 The Base Algorithm and the First Resolution Tabhle

The base algorithm is presented on the following pages. ‘T'he notation for the algorithm is based on a
derivative of Pascal. Some additional notation is used to avoid trivial details. The first resolution
table is presented in Figure 3-1. This table represents the independent / propagation type of system
structure. The other resolution tables are presented in Section 4,

There are a variety of simple modifications possible for the base algorithm scparate from the
resolution table. These algorithm modifications are discussed in Section 5. Because the
modifications are so simple we consider all the possible derived algorithms to be part of the suite.




Page 160 Replicated Data

Appendix I

Types and Variables

Primitive Types:

string
integer

ts {the type returned from the Clock function}
value {the type for the items in the database)

Defined Tvpes:

node 1..MaxNodes

itemname record
itemstring
creator
creationtime
end;

record
itemn
val

end,

changeitem record
citem

op

cn

ct

knownby
end;

tsarray array|nodel of ts;

changeset set of changeitem;

message record
from
remoteT
remoteSS
end;

Global Variables (for each node):

\Y : setofitem,
SS : changeset;
t : tsarray;

allnodes set of node;

node;

string;
node;
ts

itemname:
value

item,

(Insert, Update, Delete, AbsentSeen,
AbscntNot Seen);

node,

ts:

set of nade

node;
tsarray;,
changeset

{this node’s view of the datubase}
{the synchronizing set}

{Time array, e.g., t{5] =3 = this node has secen
the result of all changes from node 5 through
time 3 (relative to node 5)}

{the current list of all nodes which can view the
database}

{the node number of this node}




Appendix I Replicated Data Page 161

The Basic Algorithm

function Uniquename (xstring : string): itemname
begin
Uniquename : = <xstring, i, Clock >
end;
function /nsert (xname: itemname, vin : value): (ok, alreadyexists)

var

X © item;

time : ts;

r . changeset,
local : boolean,

{

hegin

LY &
2

y -

if xname € V.itemn then Insert : = alreadyexists,
time . = Clock;
x:= <xname, vin>
ti): = time;
r.= {<x, Insert, i, time, {i}>}
local . = true;
Resolve (IOC'.II. SS, t.r, t, V)
Insert .= ok
end;

function Update (xname: itemname: vin : value): (ok, nonexistent)

var

X . item;

time . ts;

r . changeset,
local : boolean;

begin
if xnume € V.itemn then Update : = nonexistent;
time : = Clock:
x .= <xname, vin>
ti): = time,
r-= (<x, Update, i, time, {i}>}
local . = true;
Resolve (local, SS, t, r, t, V)
Update : = ok

Py pit M)

end;

re )




Page 162 Replicated Data Appendix I

2

2o

A
ey

f,:-'
SO . . .
st function Delete (xname: itemname): (ok, nonexistent)

o

_ var
N x : item;
-.::\5 time - ts;
:i"' junk :  wvalue;
o r . changeset,
« local : hoolean,
begin
if xname € V.itemn then Delete : = nonexistent;
time : = Clock:
x:= <xnamg, junk >
t(i) . = time,
LI r:= {<x, Delete, i, time, {i} >}
f::-: local : = true;
::::: Resolve (local, SS, t, r, t, V)
':\j Deletr - = ok
W end;
L%
* function List (wanted: set of itemname): set of item
"\'_ ‘N
o begin 0
:-}. return from V the wanted items, if present \".
- end; stezas
2R SREA
LS SN
- ’ . PR
YN procedure Transmit RN
O S
TN begin ' R
Save(t, S8, V). {save in permanent storagc ull changes since the last save. -
) . . lishiall b
, This can be done by an incremental log.} o
) % Send(<i,t,SS>) {Send the view information (represented by SS) in a message T
A to some set of other nodes) s
A N A
15RY end; A a
o \ N ...'\‘.\-_‘
N 'fv‘l o
. ARSI
ey procedure Recewre (m: message)
s:_-,
:.‘ var
SOA local : boolean,
QSR
S
-8 begin
Dk local : = false;
- Resolve(local, SS, t, m.remoteSS, m.remoteT, V);
N if Clock < max {m.remoteT(j}| 1 < j < MaxNodes} then
AN Clock: = max {m.remoteTj}| 1 < j < MaxNodes} + 1
y \*‘l end:
¢ .‘ .‘. ’
.y
¥
W,
%
v,
.
o
a0

V_C-.‘;'-f,x;v." A
- ) Ly
- -




.
.~

.
-

\

8
-~
-

AP
P
A |

I IV Bt}

>
S

' 4

A
O B A B W]

4

P

«u
(]
(A
‘e by

- ‘\f?" .. " ’

.

>
v
.

[s
a's s

.

s
»

'
k.

LR

. [N ‘s
PP

~

*
"x by

v ﬁ ; .' )
)
AL

P AL 50,0
".-‘-, ot .'LIA.'L"L.:.‘L,\ ’

-
L
»

(0
LS
‘&
F A
S 4
ey

Appendix I Replicated Data Page 163

procedure Resolve ( local : boolean;
var old SS :changeset; var oldt :tsarray;
var newSS : changeset,; newt :tsarray;
varV : set of item)
var
tempoldSS . changeset.
matchitems :  changeset:
X . changeitem;
y . changeitem,
begin

tempoldSS : = oldSS;  {note: In practice 0ldSS does not necd to be copied. It is shown this
way for clarity}

if not focal then begin
for each x € tempoldSS do
bhegin
matchitems : = {z € newSS | x.citem.itemn = z.citem itcmn}
newSS : = newSS - matchitems
if matchitems = @ then begin  {make a dummy changeitem entry}
if newt|x.cn} = x.ct then y.op:= AbsentScen
else y.op : = AbsentNotSeen
end
else let y € matchitems, {note: ! matchitcms = 1

Perform Action (x, y, oldSS, V)

end
end,

for each v € ncwSS do

hegin
matchitems : = {z € tempoldSS | y.citem.itemn = z.citem. itemn}
if matchitems = @ then begin {make a dummy changeitem entry}
ifoldtly.cn] = y.ct then x.op : = AbsentSeen
else x.up : = AbsentNotSeen
end
else let x € matchitems: {note: ! matchitems| = 1}

Perform Action(x, y, 0ldSS, V)
end;

oldtj} : = max {oldtj], newt{j]| 1 < j s MaxNodes}

end,




Sl an i Mail o N MR TR L i « Vo Vg - e LW
A AN P e N R e A <

AR A NN

Replicated Data Appendix I

Delete

Absent
Seen

Absent
Not
Seen

X
y Insert Update Delete AbsentSeen AbsentNotSeen
Insert SS:M(x,y) SS:nc SS:nc SS:nc SS-Aly)
V:nc V:.ne V.nc V:nc V-Aly)
Update SS:Rix,y) SS:* SS:nc SS:nc SS:Aly)
V:Riy) Vi*y V:nc V:nc V:Aly) if absent

R(y) if present

SS:R(x,y) SS:Rix,y) SS:M(x,y) SS:nc SS:A(y)
V:Ix) V:D(x) V:nc V:nc V:D(y) if present

SS Hix) SS:DIxX) SS:D(x) SS:- SS:
V:nc V:ne V:nc V:- V-

SS:ne SS:ne SS:nc SS:. <SS
Vone V:ne V:nc V:- v

nc: no change

*-if(x.cn = y.cn)and (x.ct = y.ct) then M(x,y)
elseif(x.ct < y.ct)orix.ct = y.ct and x.cn<y.cn) then R(x, y)

*2'Riy) if x replaced in *)

SS. AY) = Addj to 0ldSS
union local node number into knownby of
if knownby = allnodes, then D(j)

Rk = Replace j on oldSS with k
union local node number into knownby of j
if knownby = allnodes, then D(j)

() = Pelete jon oldSS

M(j,k) = Merge knownby sets into j

if knownby = allnodes, then D(j)

V: AQ) = Add j.citemto V
R() = Replace the item with the same name in V with j.citem
Dg) = Delete item with the name j.citem.itemn from V

Figure 3-1 Resolution Table for Propagation/Independent

.'_
ol
3

K
"
[0
. NN

L




Appendix I

Replicated Data

4. Other Resolution Tables

The resolution table presented with the base aigorithm (Figure 3-1) assumes that every node should
propagate a change and that items can be changed anywhere throughout the network (ie., the
database is independent). There are a variety of other assumptions which can he supported by simply
altering the resolution table provided with the base algorithm.

First, we consider the situation where the database is dependent. Recall that changes can occur to a
data item only at the node which originally created the item in this type of database. In addition, we
assume that other nodes are not responsible for ensuring the changes are seen by every other node;
the node making the change is responsible for verifying this (viz., no propagation). This problem is
somewhat trivial, but nevertheless quite common. Consider operating system load tables which
specify the current load information for the node. This is then used by other nodes in some
decentralized load distribution procedure. Ciearly, only one node will be changing the load
information and if the changing node. fails there is little reason for concern over chunge propagation.
Figure 4-1 contains the resolution table for this problem. Note that there are no Update conflicts in
this example, so logical Clock synchronization is actually not needed. If the database was dependent,
but propagation was desired, then the resolution table of Figure 3-1 would be used.

The second alternative resolution table we consider represents another common problem: even
though changes can occur at any node (independent), propagation of this information by every node in
the network is not required (no propagation). This may be reasonable in environments such as high
speed contention or ring based local area networks in which the nodes appear fully connected. Thus
the originating node for a change is responsible for ensuring that everv other node learns of the
change. Figure 4-2 contains the resolution table which specifies the actions to be taken in this
environment.

The following tahle summarizes the requirements satisfied by the different resolution tables

requirements dependent independent
propagation Figure 3-1 Figure 3-1
no propagation Figure 4-1 Figure 4-2

Page 165

ot

alaca

2
‘-‘.‘A

‘.
o L&
..
o'
P ESTIPY WY

4

MR g
AN
TNy
NN LY
St ]
R
R <9
l-- - ¥ ‘

‘e o




A ARed e B A RAY AR AR AR AN SN A0 D e A e 42 0 B ALA" B Beuchan Sl o A S o A0
2
A
'@ Page 166 Replicated Data
'_;'.;:
)
o X
‘ - y Insert Update . Delete AbsentSeen AbsentNotSeen
A Insert SS:- SS:- SS:- SS:nc SS:Aly)ify.cn =i
b V- V:- V- Vine V:Aly)
ANk
] Update SS:R(x,y) SS:Rix,y) SS:- SS:nc SS:Aly)ifyen =i
= V:Riy) V:R(y) V- V:nc V:Aly) if absent
o Rly) if present
2N
':-\.‘
2
“u
\ Delete | SS:R(x,y) SS:R(x,y) SS:- SS:nc SS:Aly)ify.en = i
3 V:D(x) V:D(x) V- V:nc V:D(y) if present
v
pro
p. &
L~ Absent | SS:K(x) SS:K(x) SS:K(x) SS.- SS:-
A Seen V:ne V:nc V:nc V.- V-
o
s\:.l'
b'f- Absent | SSinc SS:nc SS:nc SS:- SS:-
= Not Vine V:nc V:nc V.- v
, : Seen nc: no change
-f:::
:
J SS: A = Addj to oldSS
v union local node number into knownby of j
- if knownby = allnodes, then D(j)
N Rij,k) = Replace j on 0ldSS with k
s union local node number into knownby of j
N if knownby = allnodes, then D(j)
] DGy = Delete jon oldSS
Ty K = Union remote node number into knownby of j
> if knownby = allnodes, then 1)(j)
l%.
o
I v AQ) = Addj.citemto V
b R(j) = Replace the item with the same name in V with j.citem
s D) = Delete item with the name j.citem.itemn from V
.-:::
."’ Figure 4-1 Resolution Table for No Propagation / Dependent

.-t U
o “ L -
LI
PRI S S P L S

N .

.. - . N D
A A N P oY .
N e T R e A .L".a?'iﬁﬂ-k.&;;. 2




! Appendix I Replicated Data Page 167
\
e, X
( i y Insert Update Delete AbsentSeen AbsentNotSeen
Insert SS:- SS.nc SS:nc SS:nc SS:Aly)ifyen = i
- V- V:nc V:nc V:nc V-Aty)
e Update SS:S(x,y) SS:*y SS:nc SS:nc SS:Aly)ifycen = i
N V:R(y) V¢ V:nc V:ne V-Aly) if absent
'-:..: R(y) if present
.
\
' Delete SS:S(x,y) SS:S(x,y) SS:nc SS:nc SS:Aly)ifycn =i
1) V:D(x) V:D(x) V:nc V:nc V:Dty) if present
e
o
s Absent | SS:K(x) SS:K(x) SS:K(x) SS:- SS:-
s{: Seen V.nc V:ine V:nc - V-
AN
o5
E
4'1 ~ ~
‘ Absent | SSinc SS-ne SS:nc SS.- sS
( Not Vi ne V.nc V:nc¢ V- Vo
.;::. Seen nc: no change
SN
‘:}:3. *1:if (x.cn = y.cn) and (x.ct = y.ct)then R(x,y)
N elseif (x.ct < y.ct)or(x.ct = y.ctand x.cn<y.cn) then D(x)
&0 *5.R(y)if x replaced in ¥
~e
‘:,_;. $S: AG) = Addj to oldSS
:,: union lucal node number into knownby of j
N if knownby = allnodes, then D(j)
— RG.k) = Replace jon oldSS with k
e union local node number into knownby of j
e if knownby = allnodes, then D))
.::. D) = Delete jon oldSS
b S(.k) = ifjecn = k.enand j.ct = k.ct then RijK)
o else D()
K(j) = Union remote node number into knownby of j
o if knownby = allnodcs, then X))
I V. A = Addj.citemto V
:-.j R() = Replace the item with the same name in V with j.citem
o D(j) = Delete item with the name j.citem.itemn from V
o Figure 4-2 Resolution Table for No Propagation /Independent
-C,
l.';J
Yo
o \- h'"\‘. » '\‘--‘l'—. °
RSNt
1 T XM e A




.'I

a—
I}
-."f"‘.‘ )

Y

a2 &

GG

,.
A

%
o

SRR

RMEARIV ~ !
RPN A
DAY A P

i
A

q

N LR Wi

. P e

N I Y
S
et atatatala

| &
FLXAS

"
AL

a«_ &
7.
R A
LN
2 ’v‘-'.‘..‘.‘..

b

XA
e }453 .:':

l).’ ,
IR

>

)

[
“o

.~

Page 168 Replicated Data Appendix I

5. Variations

The following sections discuss extensions of the base algorithm and resolution table. The particular
variations presented adapt the basic scheine to accomodate a variety of different application
requirements.

5.1 Sending Individual Changes Immediately

When the synchronization set is sent from a node, all changes which may not have been seen by some
other node are sent. Because this set may only be sent occasionally by some applications, it is
desirable to consider the possibility of sending a change immediately (without the remaining
members on the synchronization set). Whether this is appropriate depends on several factors. If
changes are rapid, a substantial load on the network could result. This is possible because changes
arc overwritten in the synchronization set as soon as they are detected. If changes are sent
immediately, then some changes could be sent which would not have been in the basec algorithm.
There are, however, a variety of applications which could benefit by the rapid distribution of a
change The synchronization sct would be transmitted as a backup precaution to cnsure that all
chunges are eventually acknowledged.

The same resolution approach can be used to solve this problem. lowever, care must be taken
because each change sent is independent from the preceding one. The receiving node can not
determine whether all preceding changes have been seen or not. That is, recciving a particular
change from some node j does not imply reception of all previous changes from node j. Therefore,
when the change is received the new change should be resolved against any changes of the same
name in the local SS, but the local SS entries should not be resolved against absent entries in the
incoming SS. This is exactly what is required when performing changing locally at a node and thus
the local variable is set to true.

Below are the code fragments to accomplish sending changes immediately. Another message type is
defined which is sent for every Insert, Update, or Delete performed. We will assume that the two
message types can be distinguished.

® InInsert, Update and Delvte immediately before returning ok:

Set r to have a knownby list of &
Save (1, SS, V). {Incremental save}
Sends(<i, r>), {Special send of single change}

® Add a new Receive operation:

procedure Receivez (m: record from : node; remoteSS : changeset; end)

var
local :  boolean;
begin
local : = true, {pretend it's local}
Resolve (local, SS, t, m remoteSS, t, V)
end;
e AR RO R . A

— - A g —r -r - el S ad il _Aedh fnl YA VYT vy
o e cfe e die e e AL A AR AR IR e B AR AR S S LRSS R A AR AT A S AN A S TN A

Tt l.-':
s 3 % l,s"";
- e

!




L] Appendix I Replicated Data Page 169
f.

e 5.2 Specifying Conflict Strategies for Ordering Update Operations

e

o~

All of the resolution tables presented thus far have considered only retaining the most recent change.

Ly As mentioned previously, this is not always achieved because the clocks may not be physicully
s synchronized. (However, in environments such as local area networks, the clocks are usually very
o close.) FEven if the the change which would be rctained was the most recent, this may be
:-::' inappropriate for some applications. That is, sometimes it may be desirable to chovsc the earlicr
- change rather than the later one. For example, if two clients conflict when changing an item in o

reservation database, it is the earlier change which should probably win.

L

l'. ;

>f. rg ‘,'

Using just older and newer as the only conflict resolution strategies is still overly restrictive. There
are several other functions which could be used to resolve conflicts. The functions Maximum and
Minimum, for example, appear quite well suited for conflict resolution for some application data
items in reservation and similar systems. Any (commutative) function which totally orders the data
\ values will suffice. Note that in the base resolution table, node numbers were totally ordered and
used to break Update conflicts which tied on their change times. This was used because each node has
a separate execution agent and thus could not create the needed total order.

)
LA

A trivial extension to address different conflict resolution strategies for euch type of data item is to
- include with cach item (when Inserted) the type of conflict resolution strategy which should he
v performed on Update conflicts.

5.3 Functional Operations

o Update operations replace the value of u data item in the view. This prompts the Updute / Update
. conflicts which must be resolved through some type of total ordering on the changes. There are a
{ variety of operations which do not have this inherent conflict problem. For cxample, the
commutative operations of Increment and Decrement can not conflict since the result would be the
same regardless of the order ¢xccuted. Thus, items in the database could be marked as being
manipulated only through some specified set of functional operations and avoid all conflicts. The
- changes to the resolution table would bhe quite simple. One new column and one new row must be
= added for functional opcrations. Instead of replacing entries on the synchronization set, functional
changes must add new entries. As the entries are verified to have been seen by all nodes, the entrics
A are dcleted as before. It is assumed that data items which use functional operations can not be
s manipulated through the Update operation. If a Delete operation is performed, then all functional
e entries on the synchronization sct should be removed. Thus, an Insert can be performed followed by
2] any number of functional operations and finally followed by a Delete operation. The modifications to
h the resolution table are straightforward and are not shown here.

1." 1

5.4 Atomic Changes

L}
o

The atomic operations (which change the databuse) presented thus fur are the primitives Insert,
Update, and Delete. If it was desired to combine these operations into a larger transaction, then the
transaction would not maintain the same properties as the smaller operations. Since each change to a
view reccives a Clock timestamp, it is not possible to ensure that multiple changes will be treated
uniformly with respect to conflicts. What may be desired in certain cases is that multiple changes
either all win, or all lose in a conflict. One alternative is to assign the same Clock time to every

.'-'l‘.},,r..- 4

N e ]

, -
o
Letate

q
a_d
»

N change in the transaction. This guarantees that if two transactions containing only Update
4 operations manipulate the same items, then the transactions can be serially ordered.

AR

- sy

o

.

¢
"'ff
s'_i-,\(w. A
N

RS ‘. l

-.'::;; 'I‘\ \.'4'-." ".

v




v Page 170 Replicated Data Appendix I

3 SR
o0 R
* ' -
O, ge
::" 5.5 Limiting the Size of Synchronization Sets e
o) DY
‘ . '. « .' .l
( Changes remain on the synchronization sets of all nodes responsible for information propagation ;""“._,."“‘!
- until all nodes have acknowledged the change. During node and network failure the sets could POTRIRE
D) become quite large. This is the cost for not passing the entire view around the network. If data items i
“:\.::- are not deleted, then the size of each synchronization set is bounded by the size of the view. Therc §
- could be a change for every data item in the view, but since changes are overwritten if an entry RN
'-::' already exists, the set size does not change regardless of failure duration. If, however, Delete AR
- operations occur, then the simplistic scheme presented thus far would allow the synchronization set At .'1
3 to become unbounded. There appear to ke two straightforward solutions to this problem. Fach of - Al
! f\\ these is discussed below. DL
3 _\‘ IRy )
A . « . . . . . . Eh
“-\. First, the SS could be limited to contain only n members with each node i owning O, members. The o
".-:. nodes could be assigned different amounts, provided that each SS has sufficient space for all the
entries. Thatis,
: o MarxNodes
- n= N 0
oo L [
=1
Sl
O . : . :
o If a local client makes a request of the system and its allocation on the SS is depleted, then no Inserts
NN or Deletes should be accepted. Updates can he accepted only if the item is already in the node's SS.
= P , _
- This allows all remote node synchronization sets to be accepted. This is of course a pessimistic
‘ ’: strategy. the entire system could stop accepting Inserts and Deletes, if a single node fails. [lowever, in
the case of a simple node failure, it is relatively simple to eliminate the failed node from Allnodes und
L demand that the [ailed node reinitialize when it restarts (see Section 5.6). It is much more
_ complicated if the network communication system has failed and the network is partitioned The
3 second alternative could be used in cases where this solution is unacceptable.
! The second solution involves replacing the Delete entries on the synchronization set with a
DeleteRange entry. Two Delete entrics (related to the same node responsible for some change) can be
- combined if the view contains no intervening view items created by the same node. This is Lrue ¢ven
: ) if the node which is creating the DeleteRange entry did not delete all intervening items in the view.
:\.i* When a DeleteRange entry is received, it can be expanded to match all items in the range. The test for
e intervening is made on the ctime field. For example,the following entry would delete all items
s created by node number 5 from time 1 through time 8,
=y DeleteRange (creator = 5;ctime = 1.8:¢cn = 4)
“:if-j It can be proved that this is sufficient to bound (within a proportionality constant) the SS size to the
- size of the view. X
U 8.8 Online Inclusion/ Removal of Nodes -
N o J
:} Even though the suite supports "uutomatic” reintegration of nodes supporting the database in most i{:‘; - '
-.;' cases, throughout the life of the database certain nodes may fail beyond automatic database repair - $ Y
A (e.g., disk crash). In addition, nodes may be added or removed from supporting the database. These “wiete
o~ situations require a means for a node to resynchronize with the current members of Allnodes. We will e
‘."; refer to this situation as cold starting. S
P ‘ - . . .
4.:: Since Allnodes can be changing over the life of the database, there is no reason not to place Allnodes
o,
e,:.
’
S
3

..'....-. AR .'.v".'.‘ .*‘..‘ ~ . m -

g RS T TN

P LN - DR W n e M W G -\'

N R I NI AN RN
) . . RS

. 3o .-‘(‘ n T ANV




Appendix I Replicated Data Page 171 - -.4

directly into the database. The value then propagates naturally throughout the network when a
change is issued. Removing a machine from the participating group of database nodes is
straightforward. However, adding a new member requires an agreement procedure which is quitc
similar to that of two phase commitment [Dole82, Gray78]. A sketch of the procedures is given below.

® Removing a Node i :

Allnodes - = Allnodes - {i}
Update Allnodes

® Cold Startinga Node i :

V.= @; Uk]:=0Vk: SS:= @; Allnodes:= {i}, Stillbooting:= true; Talkingnodes .= @,

»Send request for boot service to everyone; pass node number i
All receiving nodes with Stillbooting = false should send node i their node numbers
For all nodes which respond (before timeout limit), add their node numbers to Talkingnodes
While (Talkingnodes = @) and (Stillbooting) do

bhegin
Pick some node, say j, from Talkingnodes {picked as desired; e.g., closest}
Talkingnodes - = Talkingnodes - {j}
Send request for V, SS, and t to node §
If this message is received hy j, then j must add i to Allnodes before replying
If i receives's view information (before timeout limit) then
begin
create a new SS by making an Insert entry for every item in the database
Merge the returned remoteSS into SS (through standard resolution)
" ikl = remoteTikl], Vk = {
Stillbooting - = false
end
end

if Stillbooting = true then occasionally request boot service (by repeating above from »)

® Told Starting the First Node i :

V:=@: tik)l:= 0Vk; SS:= @; Allnodes := {i}. Stillbooting : = false;

If therc are no nodes which respond, then the node is free to continue, however it must occasionally
attempt to communicate with other nodes which may be supporting the databasc. Note that this
procedurc allows nodes to join the current group of view communicating nodes. It does not support
two nodes which are both Stillbooting to share information. This is allowed only after cach has joined
the primary group.




Replicated Data Appendix I

6. A Formal Mode! of the Base Problem

In this section we provide a formal framework for ronsidering the algorithms presented in his paper.
In addition, the correctness condition for the base algorithm and resolution table is given.

l.et W be the domain of values. lLet D be the domain of element names. Each view of the database
then is a subset of D X W,

Let BasicOps = {Insert(x,y), Update(x,y), Delete(x)| x € D,y € W}. Let OtherOps = {List(Q)| Q@ C D}y
{Transmit(m), Receive(m)| m is a message}. And finally, let AllOps = BasicOps U OtherOps.

Fix some particular execution of the system. Each instance of an operation from AllOps corresponds
toan event. Let E be the set of all events occuring in the particular fixed execution.

f.et op : E = AllOps be the operation associated with cach event, where : E — node be the node at
which some event occurred, and when : E — ts be when the event happened relative to the Clock at the
node where the event occurred. That is, when(e) = Cluck yherete)-

Define = tohe a relationon £ X £, "Thappened before”, such that

0;. if e, eg € E, where(e,) = where(e2), and op(e,) is performed before op(ez),
thene; — eo.

0s. ifey.ea € E,op(¢y) = Transmit(my) and op(ez) = Receive(m,), thene; — ¢a.

0s. ifej.e2,.e3€ E ey = esand ey —» e3, theney — e3.
04. ife€ E, thene—e.

We can now define the correctness conditions for the base algorithm and resolution table. Recall that
that approach supports any node making changes to the database and each node is responsible for
ensuring every other node has seen some change. Let view : E — 2!D X Wibe defined as follows: (x,v) €
viewle') iff there exists é € E such that

Vi. é — e'and op(é) € {Insert(x,y). Update(x,y)}
Va. (Ve) [Removed(e,é) = — (¢ = ¢')]

where Removed(e.é) = |[op(e) = Delete(x)] or
lopte) = Update(x,y') and opxé) = Insert(x,y) and y = y'lor
lop(e) = Update(x,y’) and op(é) = Update(x,y)
and Earlier(é,e) and y = y'l}

and Earlierfei,e3) = [{when{e;) < when(es)} or
{when(e;) = when(ez) and where(ey) < where(ea)l]

Nt S e T O §
e

oy
l}’l




. A RIS O
X S
2 T

7| Appendix I Replicated Data Page 173
3 S
\'\ 7. Proof of Correctness of the Base Algorithm and Resolution Table (3-1) s . .
e e j.-‘.:j
I To prove the base algorithm and resolution table correct we must show that for all e’, vieufe’) = V. NI ENE
S That is, the formal view and the database must contain the same set of (x,y) after every event ¢’. The ]
s following additional notation is required for the proofs. T
S
‘ Veland V) = V at where(e) immediately after (respectively before) completingevente T 7-3."‘1
R 3]
oM teland ,t) :1= tat where(e) immediately after (respectively before) completingevente v
*-._‘1 n:_'
e SS.(and ,SS)  ::= SSat where(e) immediately after (respectively before) completing evente o _;L. "]
" - R M
i .

Because SS's contain representatons of events, we will refer to SS's as if they actually contain events.
Xy Of course, only events from BasicOps have such representations. Thus, e € SS implies that op(e) €
e BasicOps. It is obvious from the program code that the program variables cn and ct for some
changeitem contain the values of the functions where and when for the event associated with the
particular changeitem. For notational convenience, we will therefore consider where and when to be
stored with each event which is ina SS.

2 We will not consider any operation to be an event which is rejected because of an error. Thus, R; and
e Rz are assumed to hold.

3
'E'{ In the proofs, minimality is referenced. Event e is minimal to event e’ with respect to some condition
b B iff e = €’ with condition B holding after event ¢ und there does not exist an event d such that d — ¢
( — ¢'and condition B holds after event d. Thus minimality corresponds to the concept of earliest.
R \.‘
'):‘..-

(-
33

Sy

Q. "‘

P

-

o
T

FA




ae

a'e

BXXX00 -

‘

)
P’ o

NG
-._‘..‘r‘_-_r

i

':\r‘.- »
K W)

L e it
Pl

.
‘a2

Nl -e
) PR
O e e i T
PR N A

i ahd

[ e,

L

2,5

.Il.f.:f £ ‘

X

{ e

)
.
- h s,

e
A ZOUN

KA AALA L9

Page 174 Replicated Data Appendix I

Lemma 1

Proof

Lemma 2

Proof

Lemma3

Proof

Lemma 4

Proof

ife— ¢’ then

(@) tdd) St (D)
(by ) s (i) if where(e) = where(e’)
(€} tli) s ot (D) if where(e) = where(e’).

By inspection and the Clock property C; V :-'::}.n;._'-_'.:q
| Rt
RN
if(x,y) € V¢, then there exists é € E such that ¢ is the event which placed (x,y) into V', op(é) P
€ {Insert(x,y), Update(x,y)},and é - e’. PRSI
..'.\'.\".~:'«'
:.: :'-‘.--".
Tt
By inspection of the resolution table (in particular axis y: Insert, Update; axis X: all) and . . \
induction on — with initially V = @, it is clear that there may be several events which m
precede e’ and which could have placed (x,y) into V.. Obviously, only one of these events e 5
actually placed (x,y) into V.. Let é be that particular event.V .o :-'_.;3:.‘
T~ A 4
. 7

ifopte) € BasicOps, ople’) € BasicOps,e — ¢’, and e = ¢’, then when(e) < when(e’).

(1) ifwhere(e) = where(e'), then by Cy: when(e) < when(e’)

(2)  if where(e) = where(e’), then it must be the case that
e—¢”" — e — e’ with where(e) = where(e”) and where(e™) = where(e’) and op(e”)
= Transmit(my), and op(e™) = Receive(m3)

(3)  Thus by the code in Receive, we ensure that when(e) < when(e’).V.

if epté) € {Insert(x,y), Updute(x,y)} then(x,y) € V,.

(1) if op(é) = Insert(x,y), then by the y axis Insert row in Table 3-1, Ry, and Rs, we
conclude (x,y) € V¢ (only AbsentNotSeen is possible on the X axis).

(2) ifop(é) = Update(x,y), then using R,: if (x,y) € V,then there must exist ¢ € E such
that Earlier(é,e), e — é, and op(e) = Update(x,y’) wherey' = y
By lemma 3. when(e) < when(e’)
By definition then Earlier(e,é) and thus (x,y) € V,

(3) .By(1)and(2). (x,y) € V.V

L R T A L W e
ot 25D NS Ladelsst
»

EACACS . Y LA
._.:.._.*..,:._ S S P R N A AR

RS LY " 'h"b'



Bidy 4 4 4 &

»

s & % S '

S

X0
NS

“y

£

atet

5};&&
by o

AR
I

)
)
INICh

LY
')?'

»

r.\).\._\

-

Appendix I

Lemma

Replicated Data Page 175

Let ¢ € E such that é — e*, op(é) € {Insert(x,y), Update(x,y)}. In addition, assume ¢ is the
event which made (x,y) € V.

Then if there exists e** € E such that é —» e** —» e*, where(e¢**) = where(e*), é € SS,¢+, and
e** is minimal, then Earlier(é,e) for all e € E such that to«s(where(e)) < whenle) and op(e) €
BasicOps.

Proof
The following diagram illustrates the lemma. Chosen on the diagram are representative
events for é, e*, e**, and e.
é
XX XY EREITIIIE - >

.
L)

e** e*

Assume given
(1)  é¢SS,+» means that during event e** either

cuse (a):  Knownby for the event é in the SS = Allnodes
Clearly, by the table for any node j there is a path of events from
where(é) to wherefe**) which includes node .

case (b): RemoteT(where(é)) = when(é) and é € RemoteSS (i.e., yop =

AbsentSeen)
Again by the table and case (a), for any node j there is a path of events
from where(é) to where(e**) which includes node j.
(2)  Let e be such that tees(wherele)) < when(e). By (1) then there must exist an event a
suchthaté—sa-—r e, é 2 ¢,a = ¢**, and where(a) = wherefe)
(3) Bylemma3. when(é) < when(e) and thus Earlier(é,e).V

[
3
P

L
.,

el

L 4




N S o
< o
2 Page 176 Replicated Data Appendix I

e Now the correctness of the algorithm is shown.
v, ],

4 Theorem

po: (Ve' € E) [view(e”) = V]

- ’1
‘:.'E: Proof

. Again we use a diagram to help illustrate the proof. Chosen on the diagram are
" representative events for é, e*, e**,eand e’.

SN
o
‘:::': e
-_*‘-

> e’
A
s
2% -
é\:
x!
he 1 N

2l >
$ﬁ e** e*

o
( i é
L
. i\'l >~
: _,:j
)‘_.-

3
b S
\ :'\ C Assume (x,y) € view(e’)

N (1) By Viand Va. there exists é € E such that

W (a) é-—»e'op(é) € {Insertix,y), Update(x,y)}and
oA (b) (Ve)[Removed(e.é) = — (e—e’)]

- (2)  Thus by (1b) there can not exist an e € E such that Removed(e.é) and e — e’

N (3) Bylemmad4. (x,y)€V,

;'.s.j (4) Letusassume(x,y)€ V.

o (5) Let e* € E be such that é — e* — ¢, (x,y) € ,+V, (x,y) € V¢, with é the event which
AN made (x,y) € ,»V, and minimal
N (6) If(x,y") € Ve for any y' € W, then by the table there must exist e € E such that op(e)

; = Delete(x) and e —» ¢*. Thus Removed(e,é), a contradiction

) (1) If(x.y’) € Ves,for some y’' € W, (y' = y) then by lemma 2 and Rg there must existe € E
N such that op(e) =Update(z,y’) and e — ¢*

e (8) Either op(é) = Insert(x,y) or op(é) = Update(x.y)

f:{.', if op(e) =Update(x,y’) and op(é) = Insert(x,y) then Removed(eé), a
oA contradiction
i id if op(e) =Update(x,y’) and op(é) =Update(x,y) then by the table ({e] axis y:

N Update; [é] axis x: Update, AbsentSeen, AbsentNotSeen) 5 :.:. A
e AT
0% e

5 B

~e DRV
o RO
T R :

. 7




T Update/Update:
~
~

Update/AbsentSeen:

~ec Update/AbsentNotSeen:

(9) Thus(x,y) €V,

v

Assume(x,y) € V.

ot Appendix I Replicated Data Page 177

(x,y') € Ve only if Earlier(é,e), . Removed(e,é), a
contradiction

by definition, é € .SS, and whenle) < ot(where(e)).
This is impossible by the minimality of ¢*

by definition, é € .-SS, and when(e) > t(where(e)).
Therefore there must exist e** € E such that it is
minimal and é = e** — ¢* — €', with where(e**) =
where(e*), and é € SS,»».

By lemma 1. tWwhere(e)) = tees(where(e)). Thus
when(e) > t,es(where(e)). Finally by lemma 5.
Earlier(é,e) and ... Removed(e,é), a contradiction

\ (1) Bylemma 2. there exists é € E such that é = e',0p(é) € {Insert(x,y), Update(x,y)} and
Tt is responsible for placing (x,y) into V-
oo (2)  Assume there exists an e € E such that Removed(e.é) and e — ¢’
R (3) Lete* € E be minimal such thate —» e* = e’and é = e*
o (4) By inspection of the resolution table we know that once an event's item is removed
iy from V that same event's item can not be returned to the database. Thus by (1}, (2),
JU'S and (3). (x,y) € Ve
;:‘.‘p: (5)  Clearly, op(e) € {Update(x,y’), Delete(x)}
";{jq ifop(e) = Delete(x) then (x,y) € V. a contradiction.
e if opfe) = Update(x,y’) and op(é) = Insert(x,y) then (x,y") € Ve, 50 (x,y) € V,+ a
) contradiction.
ol if opte) = Update(x,y') and op(é) =Update(x,y) and Earlier(é,e) then by the table
\ clearly (x,y’) € V¢, s0(x,y) € V. acontradiction.
'3“\\: (6) By (5) then there can not exist an e € E such that Removed(e,é) and e — e'. Thus, (Ve)
e [Removed(e,é) = — (e—e’)]
S-,' (7Y ..By(1)and(6). Vyand Vahold fore’. Thus(x,y) € view(e’).V
Y
: . Now the fact that the views are mutually consistent is shown.
o)
AP
:.;333 Corollary
‘.::% If sufficient correct communication between nodes occurs, and changes to the data cease (no
s events from the BasicOps), then all database views will converge to contain the same data.
:::-:.: Proof
oY
:::,; Consider the theorem and a sequence of events which are taken only from OtherOps. If
{..:, Transmit and Receive operations are occasionally performed on every node and a
- communication path exists between every node, then the corollary follows.V
. ¥ 3
y Cd
ey
e
ey
@ri

AR
L':'fsdc'r. A5

: PR PN AR AN L
'. &'& ! :\}.\ -."\" ‘::c\.'"x'_- -"'~."

I‘
NN

: ( I . - L) ... .‘.‘. - ° ’i - L] A

e _ BN
\‘~. i l'\\‘ AN ‘-- ! m.:..&q. _..1*4_4,..5._&;{1.( ‘I.LALLA‘-!LJ .B_A&LA.A‘.L.A'

"( a'L"I" ‘¢ ‘

‘.9
]
A,
s
'y
‘

‘.'
/v D
"’ .

& Pall ¢

)
[)
r

-,

e
2

R AR
YV

e



.I.{I.IT
ShHAME

a3
)

RN

+

'. '.. "‘ “‘I

I A

¢ Ll S.P:"

0
I T e e
L Ve

e
L N

v S,
e

» s
L AN

» _" ..l .‘l .‘

R A

O L -
AR

a1 s s & e
DR

. ale

. LI

R R AN

a'a

-

)

.
DA

whh

>
A
..
-
.
.

Page 178 Replicated Data Appendix I

8. Summary

This paper has presented a suite of decentralized algorithms for maintaining distributed replicated
data of the type which is usually found in directories or dictionaries. The algorithms are robust and
are intuitively easy to understand. Although they do not attempt to guarantee serial consistency,
they are adequate for many simple data storage problems. The algorithms require little support from
the communication system (basically only that if a message is delivered, it is ungarbled).
Applications which may benefit from the type of algorithms presented include mail systems, naming
servers, appointment calendars, certain types of file dictionaries, operating system load data
maintenance and distributed process control systems. The main approach taken to accomplish the
goals of the algorithms (availability, performance, and simplicity) involves custom-tailoring the
algorithms to the special requirements of client applications. This tailoring is simplified by using
resolution tables which specify the resolution strategy for action conflicts. The correctness condition
for one of the algorithms was defined and the algorithm was proved to be correct.

Acknowledgements

This work was performed while the auth¢:s was a member of the Clouds decentralized global
operating system group, Martin McKendry leader. Martin was invaluable in providing both
technical and emotional support. Thanks to Nancy Griffeth for being an excellent opponent in the
game of “trying to find a hole.” Eric Allender, Richard LeBlanc, Mike Merritt, and Jerry Spinrad also
provided valuable criticism. Erie was especially helpful in reviewing this work.

3 vy ;
E oSO N
ala.

et
. o e

2L AN 2

[




AD-A141 501 SOFTHHRE SUPPORT FOR FULLY DISTRIBUTED/LOOSELV COUPLED 3/3 -
PROCESSING SYSTEMS. . () GEDRGIR INST OF TECH ATLANTA
. SCHOOL OF INFORMATION AND COMPUT. . P H ENSLOW ET AL.
UNCLASSIFIED JAN 84 GIT—ICS—82/16-VOL-2 F/G 9/2 NL




..': - [ 8. 0 oY R Bt St il d S A S St i et SO t S it T etaVa
>
&
! 4,:_4
{ r
_.\‘.o
o
Lar’
AL
r’d
P
-.‘\-
\0
-‘.\“
£
d
A
o
o~
o
\.‘-_\'
o
o
2
RS
.
o>
", s
4",
-
N | TH) l2.8 2.5
” 59
3 of = ry 3.2
4 — o~
vx t l3»6 4
-" - - 40 ..'
- "" T i
o ML >
X —_ e
-.:_: ——] Iml 1.8 -~
. = .o
N
,__ 1.25 1.4 16
= E—— 3 = .
o -
- oo
L =
- N
N ~
R "
MICROCOPY RESOLUTION TEST CHART r »
“.‘4 NATIONAL BUREAU OF STANDARDS 1963 4 N
] ~
< o
I. ~.
k i e -
-\1 -
v, -
apem— I3
3 N
’,‘ ::\
J '\
y KN
o -
N )
LYY -~
¥
» .-
.. -
: ..-’; )
- : . »
> X
4 ‘.n ,
-
nat o
XY L

-
‘ .

X

o

Y
: _

PP
’ e
o e




PRS-

o L
.

A

- N
- .l\':‘ 3 MO n. .
;?’?(A. L‘ L’ l' .l. ‘l‘_’l‘_"‘ _'l’..l._ »

2

5 -

A
LY

] l-l.t
Loy &l Ny Y 9

'y

v
J%a"s

.‘).‘ L

L)
R AV M

28 0 o
‘l...'..

¥
KX, Py
R :'.'!:'-.'l e b

L™

2

L {5

Yy N

References Page 179

References

(Allc83])
(Bern81)

{Dole82]

[Fisc82]

[Garc80]

(Gray78]
{Jens82])
[John75]

[Kung80]

{Lamp76)
{Lamp78]
[McKe83)

(McQu78]

{Oppe81|

[Thom79]

Allchin, J.E., "Synchronization and Recovery in Distributed Systems,” Ph.D. Thesis,
Georgia Institute of Technology, in preparation.

Bernstein, P. and N. Goodman, “Concurrency Control in Distributed Database
Systems,” Computing Surveys, Vol. 13, No. 2, June 1981, pp. 185-221.

Dolev, D. and R. Strong, "Distributed Commit With Bounded Waiting,” Proceeding of the
2nd Annual IEEE Symposium on Reliability in Distributed Software and Database
Systems, 1982,

Fischer, M.J and A. Michael, "Sacrificing Serializability to Attain High Availability of
Data in an Unreliable Network,” SIGACT-SIGMOD Symposium on Principles of
Database Systems, March 1982.

Garcia-Molina, H. and G. Wiederhold, “Read-Only Transactions in a Distributed
Database,” ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982, pp. 209-
234.

Gray J., "Notes on Database Operating Systems,” Lecture Notes in Computer Science, R.
Bayer et. al., ed., Springer-Verlag, 1978, pp. 393-481.

Jensen, D., "Decentralized Executive Control of Computers,” 3rd International
Conference on Distributed Computing Systems, Miami Florida, October 1982, pp. 31-36.

Johnson, PR. and R.H. Thomas, "The Maintenance of Duplicate Data Bases,” Network
Information Center Document #31507, Bolt Beranek and Newman, Inc., January 1975.

Kung, H.T. and C.H. Papadimitriou, "An Optimality Theory of Concurrency Control for
Databases,” Technical Report MIT/LCS/TM-185, Laboratory for Computer Science,
Massachusetts Institute of Technology, November 1980.

Lamport, L., "Towards a Theory of Correctness for Multi-user Data Base Systems,”
Massachusetts Computer Associates, Report No. CA-7610-0712, October 1976.

Lamport , L., "Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, Vol. 21, No. 7, July 1978, pp. 5§58-565.

McKendry, M., J. Allchin, and W. Thibault, "Architecture for a Global Operating
System,” to appear in IEEE INFOCOM 83, San Diego California, April 1983.

McQuillan, J. M., "Routing Algorithms for Computer Networks -- A Survey,” in A
Practical View of Computer Communications Protocols, IEEE Computer Society, 1978,
pp- 86-91.

Oppen, D. and Y. Dalal, "The Clearinghouse: A Decentralized Agent for locating
Named Objects in a Distributed Environment,” Xerox Office Products Division, OPD-
T8103, October, 1981,

Thomas, R., "A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases,” ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979, pp. 198-
200.

.: . ‘;-:{I. .:f‘ .:'.\-Q.‘-'-\. o
RGN :

D) ‘-..\'-':J.







D
0
ety
P
'
e 'L
PR

i}} .

Appendix J Atomicity in Operating Systems Page 181
d .ﬂ
‘-. \
¥
0w
Y
N 0N
A APPENDIX J
[. PACILITIES FOR SUPPORTING ATOMICITY IK OPERATING SYSTEMS ;
A _l'; :-
L .
( '.‘-’
A% James E. Allchin
S Martin S. MoKendry
N
F -
(\},‘\
1A Abstract
s One of the problems fundamental to operating systes is maintaining the atomicity of a sequence of
-2 operations despite concurrent activity or system/client failures. Atomic actions have been used for
:\’. this purpuse in c!u.t.uba.xse systems and reccntly‘in progrummin'g Iunguaggs. Thjs paper introduf;cs
g support for atomicily in the kernel of an operating system. This support is not limited to managing
o just one type of data (e.g., files) and could be used to ensure that any action (or task) be accomplished
ads atomically on a sct of user definable objects. The atomicity framework presented uses processes,
“o actions, and objects. Requirements for atomicity are discussed and system primitives are defined
o] which include the ability to create and terminate nested actions, control concurrency betwcen
A actions, and recover from action aborts. The facilities presented provide system designers and
\}'*-: programmers with Lhe ability to control consistency requirements using whatever semantic
N knowledge is available The atomicity thus attained is called semantic atomicity. Unlike other work,
R we du not tightly bind processes to actions, thus allowing the facilities presented to be applicable to u
TN wide cla~s of systems tincluding applications where actions are supported by cooperating processcs).
~: One purticular approach for integration of the facilities is discussed reluted to the Clouds
:‘;.';- decentralized globa! operating system. The desirability for semantic atomicity is illustrated through
TS a file dircctory system example. Use of the facilities Lo address the problem of actions supported by
<N cooperating processes is also illustrated through an example.
a0
" 4
1\ Podad,
S "
- A
A AL
AR ENERN
- R
o N
5 Neate
«d S "\!
:;,::" SRS
NN SRS
-.’-.1 .\~:..‘ln.\1
Zad NS \1
W I.. ' l\ ‘A\.h\d

:
i

v e

‘-":- N .: :
* v - -
I SASESA
\ ' vt .l 9
) NN
AT A
J'\n‘, AL 1
- RV

3 R
L

sy

...f.\.“ :- .
\::-.' :
~ :; RN

pe
:\ -',-¢-‘.p{-'. NI A Ry P _'\‘"_ w
(SR NA R G SR S CO A S WL YR AR S WA AR

'\j\"%xf«:-.'f-.":-."\.f-.i-.;-::x"\::a ~Threl QN AL AN LIS

S Y2570 2% 1585 "




Page 182 Atomicity in Operating Systems Appendix J

1. Introduction

Much of the recent work concerning reliability and data integrity in systems has focused on atomic
actions (atomic transactions) {Gray78, Davi78, Eswa76]. We will refer to atomic actions simply as
actions throughout this paper. Actions represent tasks which must be accomplished indivisibly. As
such they form the basic units of both recovery and concurrency control and can be characterized by
two propertics:

® failure atomicity: either all results of an action are applied to the objects referenced by the
action or none are applied

® concurrency atomicity: the effect of executing actions concurrently must be the same as if each
action executed indivisibly (i.e., atomically). Thus, an action's steps can
be interleaved with other actions’ steps so long as the result appears the
same as if the actions were run serially. That is, the execution sequence
is correct if it is serializable [Eswa76).

Actions can terminate either abnormally (by aborting) or normally (by committing). Actions which
arce used within other actions fur failure contiinment vcasons are called nested actions [Davi73,
Reed78, Moss81, Lync83|. Nested actions appear alomic to the surrounding action or scope. That is,
both of the wtomicity properties ubove apply, but become relative to the current nesting scope. Thus
nested actions fail independently of each other and the surrounding action, but commitment depends
on the surrounding action to commit. During execution an action activation tree is naturally formed
Nodes in the trce are actions and edges represent nesting relationships When a nested action is
created, it becomes a child of the surrounding or parent action. All the immediate children of a parent
action are siblings. Ancestors of some action x represent the set of actions which completely define the
scope of x: these include the action x and all actians on the path to the root action (including the roo!
action). NDescendant actions are similarly defined.

An action which is not nested is called a permanent action because if the action completes normally,
changes by the action are permanently applicd. Permanent actions are root nodes in the action
activation tree. Changes made by a nested action are considered temporary until the permanent root
action commits. If an action (or ncsted action) aborts, then all descendants of the action are aborted
(maintaining failure atomicity). Unless specifically qualified, the term action will denote both
permanent ind nested actions.

Action support is relatively commonplace in distributed data storage systems using several different
implementation approaches (e.g., [Svob81, Lamp81)). However, most other application areas tend to
use a variety of specialized ad hoc techniques Lo attain the atomicity properties of actions when they
are required. One apparent reason why ad hoc approaches are used is that object types arc usually
defined a priori by the action facility. Different data granule sizes may be used, but facilities do not
exist which allow arbitrary objects to be defined und operated upon by uctions. Many simply use disk
pages or files. For example, suppose that it is desired to operate upon a specialized queue, a set, a file,
a tree-based file directory and a storage allocation module atomically. In any system which rigidly
structures objects, this hecomes cither impossible or exceeding expensive because these general
objects must be mapped onto the supported objects (e.g., disk pages). Thus an extensible
(programming) environment for managing actions is desirecd. Other research addressing extensible
environments include [l.ome77, Lisk82, Reed82).

Extensible schemes which have been proposed have used utomic actions to structure processes (e g.,
(Lome77, Lisk82]). This approach is a very convenient structuring methodology, but it can not
address certain system problems. In particular, communicating processes [Dijk68] are incongruent

-'--..
~a ' e
"

e Cad Ve

[

N
Iy

»

v'e'e
[RIRPRE WY

[



T, A AR T T - T~ v " D Dt s ar et AN S
e
N
_ Appendix J Atomicity in Operating Systems Page 183
_:7::'.1 with this structure, even though the processes may be cooperating to perform some action. (Consider
‘:. a producer/consumer example with unbounded message stream where both producer and consumer
l ' are actions.) Processes, performing actions, in this structuring approach can cpmmunicate only after
o one of the actions has committed. This, however, is clearly impossible if the processes must
A communicate to complete the actions. Unlike these prior extensible schemes we address action
::-::: structure and processes independently and do not bind actions tightly to particular processes. The
":-‘. above mentioned problems are then avoided.
e
y Although atomic actions address certain problem areas wcli, there are environments where the
e atomicity properties stated above are either too strong or inappropriate. It is well known that
::‘:,','.: serializability is too restrictive for certain applications |Lamp76, Garc82). In some sense a more
-.‘:4'. general form of atomicity is involved in these applications. This is usually directly related to having
::‘-'.‘:j more semantic information available [Kung79, Papa79]. However, trading serializability for
::::-" performance has been noted as well [Fisc82, Jens82, McKe831. Different levels of consistency have
been discussed by Gray |Gray751, but these levels are oriented toward a simple data framework As
- such, the consistency degrees suggested are not sufficient to capture the lower levels of consistency
-:'{-'.' available in a general setting. In this light, a general atomicity support system should permit
:J-::' different degrees of atomicity to capture the necessary correctness conditions, without being overly
j::{: restrictive.
0 We are investigating atomicity mechanisms which can be embedded in operating systems and
v hardware to allow applications, as well as certain portions of the operating system, to benefit from the
A common facilities. We believe that integration of extensible fucilities for achieving atomicity into an
\‘_'uj operating system is quite novel. Even though atomicity support for data storage (in particular files)
N has been suggested, our work involves a much more radical integration such that arbitrary aspects of
‘-::_: an operating system or application can be structured using actions. We specifically desire not to limit
- what task an action may perform. For example, we do not want the only objects which can be
{ ” supported to be storage pages. While this is acceptable for integration of action facilities for storage
oS systems like files or databases, we instead desire a general programming environment for actions
Y ) where the properties of actions can be defined over any part of the system. Thus, the objects that an
-:: ::' action may manipulate may be programmable. Each object referenced could further use nested
¥ 'J actions when manipulating other objects. The atomicity which we desire in this environment we will
i call semantic atomicity, as opposed to the absolute atomicity ol the conventional approach. That is,
Y the meaning of atomicity depends on precisely what the action is attempting to do [Allc82]. The
: :. 0 concept of semantic atomicity encompasses the notion of absolute atomicity as stated above.
N

One uniform structuring approach for systems uscs data abstraction and the object model [Jone79!.
P Within this paper, we will structure the world accordingly. We consider this choice to be neither
universally good nor bad; and the basic concepts presented for providing atomicity facilities are not
limited to this particular view. Message-based systems may approach certain aspects of the atomicity

‘:f ﬂ problem differently (e.g., assigning processcs to actions), but the fundamental aspects of the atomicity
_-‘::a. facilities presented appear adequate. Thus our contribution spans both message-based and
. procedure-bascd systems.
- This paper describes the general system architecture we propose for managing atomicity, the
=g synchronization and recovery facilities we provide, und how these mechanisms might be incorporated
‘;:-,.: into an actual system. As an example environment, we use the Clouds [McKe83| decentralized global
- operating system currently under construction for a local area network of Three Rivers Perq
b computers. We believe that atomicity is particularly important for distributed systems because of the
o independent failure modes of the nodes. Semantic atomicity is also important because of the desire in
.}‘.’ distributed operating systems to sacrifice consistency for performance [Jens82, McKeB3|
3:::-:: Section 2 details some of the requirements which must be addressed by any atomicity facilities
. incorporated into an operating system kernel. Our system model and the general atomicity
'3-:}:
2




>
.
A

s .
s

LS gl
Y ' ‘.{'./ n,'il "11.
a s & 4 4 a *

l’l.{

e

=
)
>

'."{" 3,4,
2P Y

‘.".
.

Wh

L}
et

- Ly . v 8
PN
: SO Y

)
v
PR

SANHHH]

v
.
.
.

] AR
22241 Q

[

@.-.c

Page 184 Atomicity in Operating Systems Appendix J

primitives we propose are presented in Section 3. Section 4 discusses how these primitives might be
incorporated into an objcct-based system. Section 5 and 6 contain examples (5 illustrates
synchronization and recovery in a directory object including operations which implement semantic
atomicity and 6 illustrates an action performed by cooperating processes communicating through
messages). Substantial additional information is available in [Allc83).

2. Atomicity Requirements

Compared to databhase systems, operating systems contain entities with more complex semantics.
While automatic support for atomicity is highly desirable, it may be more efficient in many cases to
provide the systems’' constructors with the tools necessary to build atomic actions. This seems
reasonable for operating systems and system applications because the writers are usually quite
knowledgeuable ubout the semantics of the system and can probably provide (cheaper) atomicity using
these tools. From these tools, automatic action support could be constructed for specific application
areas (e.g., dutubase systems, object repositories, action-based languages, etc.). Thus the approach of
providing synchronization and recovery tools appears promising.

The tools approach has a tacit assumption concerniny the reasons for recovery. Errors, unexpected
conditions tsuch as software modules failing to meet their specification), can not be handled with this
approach. We, however, are much more concerned with fuilures (expected, although undesirable,
conditions--for example, node und network failures, access rights violations, or process faults such as
division by zero) Thus, unlike recovery blocks and conversations |[Rand78, Russ80, Shri78], failures
must be anticipated.

As discussed in Scction 1, it is important to address semantic atomicity. Consider a file directory.
Most clients of the directory do not care when a listing is made if they sce transient (uncommitted)
changes. Forcing operations of this type to be atomic will result in low levels of concurrency on the
directory. Of course, a lile-backup client of the directory may insist on seeing a serial view. Thus,
what is acceptable depends on the semantics of use. In many cases it is possible in operating systems
to know a priori these requirements and thus (if the facilities were available) take advantage of these
semantics.

It is also important not to exclude conperating processes from the atomicity support. In fact, it
appeurs decirahle in uperating systems Lo not automatically assign actions to processes. Instead a
more dynamic scheme is required which will allow one process to support many actions or several
cooperating processcs to support one action (e.g., the clicnt/server model with cooperating servers fits
this paradigm).

In general there ure five arcas of support necessary for atomicity. First, there must be some method
for the users to create und terminate actions. Second, there should be synchronization facilities (in
addition to process synchronization) which can be used by processes to maintain the atomicity
requirement between actions (concurrency atomicity). Locks and Limestumps [Kohl81] are typical
synchronization tools used in database systems for this purpose. Third, there must be recovery
facilities which permit flexible management of data necessary to recover the action to a consistent
state (failure atomicity). Logs [Gray78) econtaining cither before or after images (or both) have
typically been used for this purpose in database systems. In nested action environments automatic
propagation of synchronization and recovery information to the parent action is also desirable.
Fourth, because the support for atomicity is not performed completely automatically, there must be
facilitics which permit user defincd processing on the transition of an action to another state (e.g .
performing recovery on the operation —» abort transition). Finally, there must be process agreement
facilities which allow the processes performing an action to reach a consensus, despite failures,
concerning action state transitions (particularly the operation - commit transition).




F ¥ A A
] a & 8
- ARy

ay

ot
(]

1

PN

’
‘u %

.
L
3

AN
Jalte

g
¢

e
L)

(l

t.-‘. - »

»

,,'4;.1...'

| ('-' .,

. )

4 = ‘-:I-\ ) -,

Appendix J Atomicity in Operating Systems Page 185

3. System Primitives for Supporting Atomicity

3.1 System Model

Physically we view the environiment as composed of nodes and an interconnection network. The nodes
communicate through messages sent through the network. The nodes contain two different types of
memory: volatile and permanent. Nodes may crash (fail) erasing the contents of volatile memory, but
without disturbing permanent memory. When a crash occurs we assume that all processing stops and
that random messages and random chunges to permanent memory do not occur. The network is also
unreliable and can lose, duplicate, or re-order transmitted messages. Messages if delivered, however,
must arrive ungarbled. That is, message corruption must be detectable.

There are three logical entities in the system: processes, objects, and actions. Processes are active
agents which execute at a single node. Processes may be directly created and terminated only
through the kernel at that node. Node failures can indirectly terminate a process. Actions are units
of concurrency and recovery. Actions may span node boundaries and may bhe concurrently performed
at several nodes. The node where an action is created is considered the coordinator node for the
aclion. Actions, via processes, manipulate objects. An object may be considered to be an instance of a
generalized abstract data type (even though not necessarily implemented this way) which can only be
operated upon through well-defined operations. During an action, objects referenced must not be
moved from the nodc where the action first referenced the objects. If an object is moved between
nodes, no aclion may operate upon the object during the migration.

Processes, actions, and objects are identified through processids, actionids and objectids.
Maintenance of process identification is assumed external to the action support environment,
however it is ussumed that the identification is unique within the node where the process is created.
Action identification must be unique across all nodes. Action identifiers are provided by the action
support primitives discussed in Section 3.2. Object identification need only be unique within the node
where the object is located for the action support facilities. Even though system-wide uniqueness is
not required by the action facilities specifically, it may be necessary for other aspects of particular
systems (e.g., if objects can be globally addressed). One kernel primitive is provided to generate
unique objectids; this could be changed appropriately to achieve the uniqueness required.

Normally processes do not recover from node failures. However, we require a special kernel primitive
which allows processes to be automatically restarted at some location following a node crash. That is,
on restarting the system after a failure a checkpointed process will resume at some user definable
location with certuin variables re-initialized to checkpointed values. This is necessary to guarantee
correct processing of the action state transitions.

3.2 Action Creation, Use, and Termination

Action creation is performed through the following kernel function:
function create action (actiontype : (permanent, nested), parent : actionid) : actionid
The actionid is an index into a kerncl-protected action identification table. This table, one local to

each node, contains information concerning the state of the known actions, which prucesses are
performing the action, and which objects have been affected by the action. Processes are frec to store

[
g = .
"".I'J‘l"". fy g ‘l" .

~




a » ¥
MY

r

ary
-
-4

A

|
NN

-
.
.

l'.' by '.
A I

»
’

R A A N

Al

Page 186 Atomicity in Operating Systems Appendix J

the actionid as desired (or even pass it). In a production implementation, capabilities which associate
processes to actions would probably be necessary. The actiontype parameter specifies whether the
action should be created as a permanent action (no nesting) or relative to the specified parent action.
It is possible that the parent does not exist anymore and in this case the caller receives an error on
invocation.

Processes mayv exccute on behalfof only one action at a time; binding actions to processes is performed
dynamically  Assuming the action specified still exists, a process can become linked to the action
through the following hernel call:

procedure link (ncwaction : actionid)

This dynamic assignment permits processes to manage several actions, if desired. This ability is
particularly attractive for server processes managing several user actions, for example. Linking to
an action x automatically unlinks any action y currently linked to the process. A null actionid is
available to unlink the process from all actions.

It may be necessary to determine what actionid is currently linked to a process. This is useful for the
synchronization discussed below.

function ¢ellid uctionid

Termination (commitment or abortion) of an action is performed as shown below. Both procedures
can return errors if the action does not exist (e g., already aborted). If a process terminates, then all
actions associated with the process (determined from the action identification table) are aborted.
{Recull we are not addressing software errors.) Both of the termination procedures operate on the
action currently linked to the invoking process.

If a nested actionis being committed, all synchronization state and recovery logs are inherited by the
action’s parent (because the child has completed). If a nested action has visited remote nodes, a one-
phase distributed commitment protocol is begun. If a permanent action has visited remote nodes, a
two-phase commit protocol is used {Gray78]. Once all recovery information is safely stored in
permancnt memory, special user-definable procedures are performed to complete the commit
processing (see below). The timelimit associated with the commit procedure is useful when multiple
processes are cooperating on an action. If the associated processes do not request commitment within
the specified duration, then instead of committing, the action is aborted. All cooperating processes
must agree that the action is complete by executing the commit primitive before final commitment
occurs. Thus, we avoid the domino effect [Rand78].

procedure commit (timelimit : timedurationty pe)
procedure abor(

Asa process, on behalf of an action, accesses an object, a series of events occur. These events are
diagrammed in Figure 1. Special client procedures can be defined for all three of the special events:
BOA (beginning of action), EOA (end of action), and Abort.

Processes must inform the kernel when a new object on the current node has been referenced. In
addition, the processing code for the events of BOA, EOA, and Abort must be defined for this object. If
special event processing is not required for one or all of these, a special procedure name of none can be
used. The same event procedure code can be shared by several objects if the processing required is the
sume. Event procedures can not use actions during their processing. Processes inform the kernel of
the referenced objects through the following primitive:

.
@

h".’ N " P PN P




Appendix J Atomicity in Operating Systems Page 187

s

== | BOA = | Operations L EOA (commit)

l 1 $» |[Abort

Figure 1 Action Events Related to Objects

procedure touchobject (object : objectid; boa, eoa, abort : procedure);

The first time touchobject is executed for an action/object pair, the operating system updates the list of
objects referenced by that action. This is used to execute the associated event procedures on
termination of the action. The event procedures which may be defined are

BOA beginning of action.
This procedure is performed immediately following the invocation of the
touchohjeet primitive assuming that this is the first time this object has heen
touched by the current action.

EOA end ol action (commit).
The EOA code is executed after the recovery arca is safely stored in permanent
storage following permanent action commitment; it is not executed on nested
action commitment. This event processing procedure must be written in an
idempotent manner. That is, it may be (relexecuted many times due to system
failures and any complete execution must be correct regardless of prior partial
executions,

Abort abort action.
Once an action has been aborted by a process, the Abort code associated with all
objects touched by the action is executed. The Abort event does not occur if volatile
memory fails. This is explained further in Section 3.4

Even though these are specified as procedures here, this same event scheme could be used in a
message-based system. This could he accomplished by delining event messages (possibly by
exceptions or emergency messages) o represent these action state changes and requiring each
process to appropriately hundle the events.

If a process transmits an actionid to u remote node while processing an action, the local kernel must
be informed which node was accessed. This information is used for coordinating action state
transitions. The following kernel call is used to inform the local kernel of the access. If the process
does not actually access the remote node for some reason after executing this call, it is unimportant
since the atomicity system will discover this [rom the remote node during action termination.

procedure offnode (remotenode : nodeid),
The last kernel primitive permits processes to request the state of an action. This is particularly
useful when multiple processes, working cooperatively on some action, must reach agreement before
deciding whether to abort or commit. This can be used in the implementation of the conversation
concept [Rand78). Section 6 illustrates this primitive in a cooperaling process environment.

procedure notify (action : actionid, statc : (active, aborted, complete, unknown))

These primitives are sufficient to manage both permanent and nested actions in an elegant manner




2 b
v
o oo

WAL,

AN AL S s A S s e il Sw DR L e e

- - g J— B LIl A and sonn
AR AN AR N

Page 188 Atomicity in Operating Systems Appendix J

For example, even in a nested user action it is possible to perform a controlled violation of the current
action nesting for maintaining operating system state data (e.g., process queues). In addition,
intrinsic to the system is the concept of cooperating processes performing an action. This is a natural
extension to the use of cohorts (Gray78] in distributed database systems, where a transaction has a
support process (a cohort) on each node it visits.

3.3 Action Synchronization Facilities

Processes may need to perform specialized synchronization with respect Lo one another if they are
linked to actions. It is possible to control action synchronization via most any general process
synchronization scheme, because processes have access to actionids and also have the ability to
determine those conditions that constitute a conflict. However, for convenience and efficiency, we
propose common action synchronization mechanisms be available in the kernel. This does not
prevent coding specific synchronization as necessary to obtain additional concurrency (eg,
{Lamp76]). We provide two basic action activation tree synchronization mechanisms: multi-mode
locking and counting semaphores.

3.3.1 Action-based Multi modr Locking

Locks |Eswa76] are a reasonable choice for one mechanism, because there are many concurrent data
structure maintenance algorithms in operating systems which use a locking model (e.g., [Kwon82])
Our approach requires a lock compatibility table to be defined before lock operations can be used. The
goal is to provide a framework more general than simple read/write locking modes. ‘The directory
example presented in Section 5 illustrates why this approach is desirable.

The lock domain, mode compatibilities, and the lock protocol used are determined by the process
defining them. By associating a domain with each lock type, it is possible to solve the phantom
problem [Eswa76] That is, entities do not have to exist at the time they are locked. Again, the
directory example illustrates the significance of this. By allowing programmers to control lock
protocols, coordination schemes such as non-two-phase protocols can be used [Moha82}, driven by the
semantics of the accessing pattern. Below are the locking operations.

modetype = integer. {system dependent}
lockidtype = integer. {system dependent}
instanceidtype = integer; {system dependent}

compatibilities = record
moderequesting : modetype;
compatiblesct : set of modetype;
end;

procedure defineconflict (lockid : lockidtype; accesstable : set of compatibilities)

function setlock (lockid : lockidtype: thing : instanceidtype; m : modetype. timeout :integer)
‘- (okfirsttime, okothertimes, timeout, invalid)

function testlock (lockid : lockidtype; thing : instanceidtype. m : modetype; aid : actionid)
: (ok, conflict, invalid)

function releaselock (lockid : lockidtype; thing : instanceidtype; m : modetype)
: (ok, notset, invalid)

function releaseall (lockid : lockidtype) : (ok, invalid)

Suppose a process requests a lock in some mode m and is linked to action x. If only ancestor actions of
x from the action tree hold incompatible lock modes to m, the lock is set. For example, in the simple
shared read / exclusive write situation, only x’s ancestors can hold write mode locks and still permit x

EN AN
S



s

LR ) h
P
."‘_:" o :": 3:‘;‘

L4
»

A
5
'I&

.

N0

.".'l ‘l
AN

Appendix J Atomicity in Operating Systems Page 189

to obtain a write lock. As actions commit the ownership of the locks propagate to the immediate
parent action. If a setlock is executed and the lock cannot be set because of mode incompatibilities,
the process is suspended until the lock can be set or until a timeout occurs. Once x operates on some
lock, x's ancestors may not touch that lock until x terminates.

The special status indicators of okfirstime and okothertimes used in setlock are provided so that
applications can detect when they have already locked an objcct in the given mode This information
is useful for determining when it is necessary to save the state of the object through the recovery
facilities

3.3.2 Action-based Counting Semaphores

Locking as presented above allows actions to avoid one another in order to achieve serializability. It
is also desirable in some cases to have the ability to apply additional ordering constraints For
example, guaranteeing one sibiing will execute before another appears to be a common prot see
for instance the example in Section 4.1). Our work is novel in generalizing ac 1 tree
synchronization in this manner.

In a nested action environment semaphore values are managed according to the visibilit: "~ an
action has depending on the action’s lacation in the action activation tree. Thus anactioni. 1+ e a
V value from an ancestor, but not from an sibling. Lpon commitment the changes to the semaphore
are appropriately propagated. If the action aborts, the borrowed V values from it's ancestors arc
returned. Thus this mechanism is an extension of standard counting semphores to the realm of
reliable computing in a nested action environment. As with the locking mechanism presented above,
once a child executes a semaphore operation on some semaphore, no ancestor may reference that
semaphore until the child complctes. If processes are cooperating performing some action, then
because they will be using the same actionid, the action-based semaphores become equivalent to
standard semaphores. Further details and the associated algorithms are included in [Allc83). The
operations are shown below:

semaidtype = integer,; {system dependent}

function definesemaphore (initialvalue : integer) : semaidtype

function destroysemaphore (semaid : semaidtype) : (ok, invalid)

function actionP (semaid : semaidtype; timeout :integer) : (ok, timeout, invalid)

function actionV (semaid : semaidtype) : (ok, invalid)

3.3.3 Guaranteeing Progress

Specific support for deadlock and livelock is not provided by the kernel. Appropriate system structure
and associated lock and semaphore protocols can prevent deadlock in many cases. However, if
deadlocks can occur in the system, the responsibility for appropriate action lies with the implementor
(using timeouts, efc.). If locking were the only mechanism used for action synchronization, then
deadlock detection would be straightforward (although probably expensive). However, as discussed
above, processes may perform specialized synchronization between actions without using locks. This
makes the problem extremely difficult because it may not be possible to determine which actions
another action may be waiting for. We will not discuss this further here.

3.4 Action Recovery Facilities

Logging appears to be a reasonable method for maintaining action recovery information. To support
logging, system primitives are available to write and read records associated with action/object pairs.

-

h

.,:l

[4
, A

[/

b

v/
4

’
fy
yy "

b
v 35 RV

. _;.'.:.“'. & 4 0y
MR

PR AL
.:1‘5

]
v
_,‘,,1.
y_a

.

[4

7

W



o Page 190 Atomicity in Operating Systems Appendix J

During the life of an action, records may be wriiten to the log. If the action aborts, the log is deleted
after the Abort processing event is complete. If the action commits, the log is inherited by the action’s
parent. This involves no data movement from the recovery log, simply a notation to be made
regarding which action owns the log. If the action is permanent, then the log is placed on permanent
storage FEach node maintains a local log for any action known at that node and each saves their AR
portion of the complete log during commitment. After the logs are safely stored, the event EQA '
occurs. The log is automatically discarded upon completion of the cvent EOA

Any information desired may be placed in the log. However, hbecause the log for an action does not "
become saved in permanent memory until the associated permanent action commits, recovery from T e

an action abort cannot require the log to recover across a volatile memory failure. In general, though,

we suspect that assuming actions will complete is the proper assumption for operating systems and BN
many applications. This optimsitic viewpoint dictates that changes be made to the current version of T
shared entities using the log to maintain the unaltered version This approach results in much of the SRR
overhead associated with supporting actions to be tied to abort and not commitment. T b

During the first write by an action to the log for some object, the log is officially created. To notify the IR
recovery facility that the log records should be returned, a reset operation is used. If the items to be R
saved are memory pages, then it is possible to integrate some of the logging svstem with the memory
management system (e g, by manipulating page tables) The log write, reuad, and reset primitives are
defined below

procedure writelug (object  objectid. <array of items to save, length and address >)

procedure rrad/og (object : objectid;
<array of addressex of where to place returned items >, status - (ok, endoflog))

procedure resetlog (object - ohjectid)

One possible extension of the recovery facilities involves client-controlled checkpointing of the log
into a staging area of permanent memory during nested action commitment. However, this can
become cxpensive when multiple nodes are involved forcing two-phase commitment to be used during
every action commitment. However, for long running actions, this may be necessary. The general
approach in this case would be to subdivide the long running action into a group of nested actions
which could checkpointed upon completion. The parent action would simply guarantee that the
changes would only become visible if the entire task was accomplished.

3.5 Implementation Structures

, Shown below is a rough sketch (Figure 2) of the structure necessary to support the facilities discussed
At above
.

0
LR R
s s e 8
Pl

4. One Possible Application Using the Primitives

o

\::::j This section describes how the system primitives defined above might be incorporated into an actual
Y operating system. The approach used in Clouds [McKe83| is to definc a programming language (a
e Pascal derivative) which has specific support for actions and atomicity. The compiler converts the
’ language constructs into the necessary system primitives. The language approach is convenient

., because it organizes the atomicity primitives into a uniform structure and removes some of the causes

> for errors in their use.

!

ey

LY

o

oy

N

N A




&

A4 o

e
‘%4

[4

..c '.a

'-"‘-"n,'
S

'l
PR

XAHAANR

G

.

‘ _'/.'.':"f >

welele

[

S350
Yy B4, "'. ]

[y

s,

LI

.

& -
y .'.'-' .‘.'
SN

K PR
.‘::'.: "’u W

O

P A

-*'

.

A
_\ ..l .~

O

¢

Appendix J Atomicity in Operating Systems Page 191
nodes visited by action
N C P IPCTP
— I logs. Jocks. semaphores mfoJ
objects touched on this node objectids
‘ touched
(P [ [
°
general info:
actionid —ese—
parentid
state object object object object
processids event event event event
etc. info info info info
meesss———— E————
Figure 2 Conceptual Data Structures

In Clouds, an object type is a globally-named generalization of an abstract data type which can only
be operated upon through well-defined operations. An object is an instance of some object type.
Objects are distributable in Clouds and may reside unywhere in the network. For the purposes of this
paper we will consider only objects which support actions (viz., support recovery and action
synchronization). Objects in this class can be considered to be composed of three basic components:
the data portion (data and the operations on the data), synchronization necessary for shared access,
and recovery control. In addition, some object state may be kept in permanent memory in order to
survive volatile memory failures. Figure 3 illustrates a conceptual internal structure of an object.

Nested actions can be used to specify units of synchronization and recovery. FEach abject type
operation can be denoted as an action definition (similar to [Lome77]). Action atomicity is used to
transform the state of the objects referenced in the action into a new {consistent) state. Semantic
atomicity is desired for all actions and it is the responsibility of each ubhject type to ensure that
appropriate abstract behavior is provided.

Object definers can control synchronization among actions by specification statements which are
provided when an object type is defined. An access statement is used to specify the object operation
compatibility necessary to arbitrate access between actions. These operation compatibilities are
managed using gencralized locking modes (possibly one for each object procedure) to ensure the
specification. The locks ure managed through a two-phase locking technique which ensures that
scrializable abstract behavior can be achieved. The locks are held until action termination.
Incompatibility betwen a requesting action and an accessing action of some object causes the
requesting action’s process to block until some specified timeout occurs or access is allowed.

To force a certain path or order of executions of the procedures by actions, the order statement can be
used. The format of this statement is similar to path expressions [Camp74] and can be directly
compiled into operations on action-based semaphores. Sequencing (;), repetition (n:), and alternation

AT T R
:-\\s .:*',-\{\.:".
AR AN N

WAy

{l

N »
a g °
'1'.(‘/‘: g

-,"
? .
.
]

P
e o
(N r‘-"v"v
(1, Tyl

e ,
)



[y
".'-Z-':'-'f

SN
SN

AR

-4 .lﬂ‘l ".ﬁ’

NV NYY

" 'S -.l r}
A t

0K

30

[}
¢

Q505

Page 192 Atomicity in Operating Systems Appendix J

\ v / operation invocations

synchronization
control

local data

permanent

Synchronization monitor

2 operation (or action)
tion)z

: operation (or ac

operation (or action)n

' BOA (beginnihg of action)

PRI

: EOA(end of action:commit)

Figure 3 Data Object Structure

(,) can be specified in the order statement.

Object definers are additionally provided with the tools necessary to synchronize action access to local
data within the object. This is accomplished by using a sync monitor similar to a standard
synchronization monitor [Hoar74). It can be used to control mutually exclusive access to local
variables within an object. Any object procedures can be placed into the monitor. Synchronization
within the sync monitor is possible through statements which allow events to be waited upon and
signalled. Programming arbit-ary action synchronization is possible through the synchronization
monitor and via lock statements which are directly compiled into lock system primitives. Thus a dual
approach for action synchronization is provided: static specification when an object type is defined
and dynamic programming tools to address special problems. This generality permits the tradeofls of
simplicity and performance to be adequately addressed. The synchronization facilities are discussed
in more detail in Section 4.1.

Each object type contains special procedures to manage the action events of BOA, EOA, and Abort.
The compiler generates some additional setup code for these procedures, but in general they behave
in the same manner as discussed in Section 3.1. Each object type can also define variables which
must be made permanent upon commitment of a permanent action.

In the Clouds object framework, actions can be organized naturally by objects which reference
operations (which may be nested actions) on other (conceptually lower level) objects. For example,
consider the object types shown in Figure 4. When a createfile operation is executed the getspace and
createentry actions compose to form the createfile action.




Appendix J Atomicity in Operating Systems Page 193

file object type

createfile | } action begin storage object type

getspace

createentry \ . :

end getspace || action begin
°

. ®
deletefile || action begin end
deleteentry :

putspace ¢
end putspace |} action begin
°

createentr action begin *
y Py 9 end

®
end

deletentry action begin
°

°
end directory object type

Figure 4 Natural Nesting Example

Invocation of object operations by a process is performed by procedure call.

< capability for object instance >. <operation> ( <parameters>)[weak]
{exception

<cause; > : <statement list>

<causep> : <statement list>

others : <statement list >
end |

By default the call is reliable and is performed in a manner which ensures "once and only once”
semantics {even if the target object is located on a remote node) [Spec81]. The calling process waits
for completion of the call or until an exception is raised (e.g., timeout). If the target object does not
support actions, an crror is returned if the executing process is acting on behalf of an action. If an
action has been linked to the executing process, the compiler generates code to notify the kernel
accordingly (through touchohject). This is used to return to the objects upon commit or abort of the
action (refer to the EOA and Abort events discussed above). The optional keyword weak specifics
that no value is to be returned and that if the target object is on another node in the network, then
only one send need be performed (no waiting). the transmission is assumed unreliable. The operation
therefore can be executed zero or at most one time. This option cun not be used if the executing
process is linked to an action. If an exception (e.g., timeout) is raised and actions were created during
the invocation, then these actions are aborted.

4.1 Action Synchronization

The access specification, as discussed above, is used to state the object type operation compatibilities
in order to arbitrate access between actions. Incompatibility, a conflict, causes requesting actions to




’

g,
"I\' N P
o~ el
" - Page 194 Atomicity in Operating Systems Appendix J
o
e wait for the conflict to be removed (or until some specified timeout occurs). The general form of the
e specification follows:
“; ‘ <compatibility> ::= < mode requesting; >: [ <mode held; >, ..., <mode held,>|
:-',:: access = ( <compatibility; >;... <compatibility,,>)
-
3,:::-. For example, access = (read : [read); write : []) represents the usual one writer / multiple reader
-y svnchronization assuming that there are two operations on the object type (read and write).
_.\ : Locks can be declared and then manipulated via the system primitives discussed in Section 3.3. The
“" format of the declaration follows:
R
b7 lockvariable : lock ( < compatibilityy >. ... <compatibility,, >) domain = instanceidtype
s
1 The order specification is used to state specific orderings among the operations which must be
p enforced. Since this is similar to path expressions, only an example will be given here. Consider a
RON spool queue with the operations of enter and remove. Assume there can be only n entries in the queue
S maximum and that we desire remove operations to wait if no enter operation has been committed
- relative to the action invoking the remove operation. The specification might be given as follows:
N
1, %‘.
order = n: (enter, remove)
‘ n"::‘-
j«‘::-: This specification enforces that at least one enter is committed before a remove operation is allowed
e and that at most n enter operations can be performed hefore a remove is committed.
q'.:-:
:.::. 1.2. Recovery Facilities
{ - The recovery facilities are again very similar to the corresponding system primitives. llowever,
_‘ specifying the objectid is not required (supplied by the runtime system) and each log record is typed
J;.:s by a variable placed first in the log record which contains the name of the operation which performed
;:.': the writelog. The format then is
- .-l
7
\ save(<var;>, <varg>, .., <var,>) {corresponding to writelog}
s
~,"'~s: restore (<logrectype >, <vary >, <varg>,.., <varp,>) {corresponding to readiog}
M
wod
N 5. A Directory Example
) For convenicnce in this example we will use the lunguage notations presented in Section 4. The
\':.:j purpose of the example, however, is not to defend particular language constructs, but rather to
‘?:-:,, illustrate the use of the atomicity facilities. In following we analyze how a directory objcct type might
o \j be defined using the facilities presented in this paper. We show two possible approaches using
\oJ different levels of sophistication to achieve different amounts of concurrency. The first approach o
s requires only an access statement Lo control action interleavings. The sccond requires an ' -
N alternative specification and minor programming, but achieves higher concurrency. A more formal AN
YRR treatment of this design process in presented in [Allc83]. A .-';\-T‘
[t o, - -
.-..... _.-.'\.‘:'
o Suppose we wish to create an action-based directory object (such as the one shown in Figurc 4 with NS
e Add and Delete substituted accordingly) with the following operations: RN
@r1 A
'-:.:: Add(k : key, v : value) : status
-:;‘.:{
: ;l:~»
'n:'\

&



L1
-
‘\\
h)
&

A
¥ - % .' .. ~
A
¢ L,l."l.{‘.

4,

-
"u’..‘
LR RN

..S

‘ 4 A}l’

LY

&

o
>
x5

. "
' < A
v Y

o)

P4y
J. >y

0

52

Appendix J Atomicity in Operating Systems Page 195

Delete(k : key) : status

Lookup(k : key) : status, value

ListSerial(currentkey : key) : status, value, nextkey
ListApprox(currentkey : key) : status, value, nextkey

Let us assume that all operations other than ListApprox require a serially consistent view of the
directory, but that ListApprox has semantics such that the invoking action will accept seeing
(possibly) uncommitted changes. One possible access specification is given below.

access = ( Add :[ListApprox];
Delete ‘{ListApprox],
Lookup :{Lookup, ListSerial, ListApprox],
ListSerial :[Lookup, ListSerial, ListApprox],
ListApprox :{Add, Delete, Lookup, ListSerial, ListApprox])

This specification, although correct, may not achieve an acceptable level of concurrency. FEven
though two actions could correctly operate on different keys in the directory, this is not allowed by the
specification.

To improve concurency a different access specification could be used together with progrumming to
specifically control directory entry sharing. In the alternative specification below we only
synchronize the operation ListSerial, the other operations can be synchronized via the built-in lock
facility.

access = ( Add :[Add, Delete, Lookup, ListApprox},
Delete :[Add, Delete, Lookup, ListApprox];
Lookup :{Add, Delete, Lookup, ListSerial, ListApprox];
ListSerial :|lLookup, ListSerial, ListApprox];
ListApprox : [Add, Delete, Lookup, ListSerial, ListApprox))

We declare a lock as follows:
x : lock (read : [read]; change : []) domain = key

We can then use setlock and releaselock to dynamically control action synchronization on the
directory entries. Using this approach the Add operation might appear as follows:

action Add (k : key; v : value)
begin

setlock (x, k, change, timelimit);

... {put entry into the directory}

save (k,v) {implemented through writelog}
end;

Note that we may lock instances which do not exist, thus avoiding the phantom problem and
preventing loss of serial consistency. The choice of synchronizing ListSerial at the directory level
instead of the key entry level avoids the overhead of acquiring and releasing a lock for each key.
Instead only one lock must be accessed. Thus, tradeofls involving granule size are possible. The
Abort event code might appear as follows in the directory object.

entry procedure Abort,
var
k:key, v:value;

begin

. ’ Tt e
NIWINY B L,

..
ZRA

LA

R
IR

."
(A

MO
A

e

<

{ .

sl
“ "
i




NG
ey

g
‘.

.-
e
o
e
)

¢

. *:‘&1" '

USRI R AN aXu )

Page 196 Atomicity in Operating Systems Appendix J

restore (logrectype, k, v, stat);
while (stat = endoflog) do

begin )
case logrectype of T .!'
add :{remove entry fromdirectory} ARG
delete :{putentryback into directory} L
end;
restore (logrectype, k, v, stat)
end,
{locks are automatically released by the runtime system using releaseall}

end,

6. A Cooperating Process Example

There are many interactions among processes which do not necessarily involve cooperation of the
processes to complete the actions the processes are performing. Consider message queues where the
receiving process is not allowed to examine messages until the sender process commits the group of
messages sent. A typical example is a spooling system where the spooler process does not see
producing processes’ output until it is committed  In a sense the output is cached until the commit
occurs. This situation appears quite common and can casily be supported by the atomicity facilities
presented. The language structures associated with the Clouds system also model this paradigm.

There ure however, examples where multiple processes must interact to complete an action. We now
itlustrate how the atomicity facilities discussed in this paper might be applied to solve this class of
problems. Presented below is a sketch of two processes which cooperatively perform an action. As
discussed hefore, commitment is possible only if both processes request commitment. If one of the
processes aborts, the other one can detect this through the notify system primitive and can then abort
the action also.

=
Process;: Processs: :{t
create action o
Send actionid receive actionid -
link to action link to action
repeat until done repeat until done
check action status check action status
if action aborted, then abort if action aborted, then abort
do work receive message
write log records as necessary do work
if error abort write log records as necessary
send message if error ubort
end end
commit commit

Process; is responsible for initially creating the action; it then communicates the actionid to process,.
Both processes then link to the action and begin processing. Both processes must occasionally check
the state of the action and abort if the other process has already aborted the action. Only if both reach
commit will the action actually be committed.

The processes can define the objects in any manner that is convenient since the primitives primarily
use the objectids as simply a manner to structure the logs. If the two processes manipulate the same
object, the first one to issue touchobject is the process responsible for performing the action event

IO SN ST T [} \'_“‘.‘J‘ . ,.-.‘ , . .'-..".-. LR .--_‘. . -."....-‘.- - o)‘-'.-.," e et e '4. R
“'n At Y. . ﬁ".’\""_.'. v % _'-,'~» . R I I N AN -'_'.“_.‘ URICRAEN _'.'\"
PaNh X aNuwNX) L v (e caias ‘..L‘:Ltj:(h.lg'_.‘.f - '.'L‘A.‘;L.:"".‘",‘A" I, I RS N ) .\\’ AL LA



L]
v
Ry} AE;:‘

L

-

it 4 & 4

N TR -

Pak ~
4,
P

oy,
\’ .,....
|

oo

Appendix J Atomicity in Operating Systems Page 197

procedures (e.g.. EOA). As desired, both processes, because they are performing the same action, will
write to the same log. Of course, if the processes could enter a shared object concurrently, standard
process synchronization must be used. Since they are performing the same action, interference can
not be prevented by action synchronization.

7. Summary

'This paper has explored the issues involved with integrating facilities to support atomicity into the
kernel of an operating system. For generality these facilities should not bind actions and processes
tightly permitting either a single process or multiple processes to perform an action. It has been
suggested that a more general type of atomicity, semantic atomicity, is desirable for eflTiciency in some
cases. It has been proposed that system designers and programmers be given direct control over
accomplishing atomicity (both concurrency and failure). We have presented a set of requirements for
supporting these kinds of tools. These requirements include the ability to create and terminate
actions, to control concurrency between actions, to recover from action failures, to perform special
processing on transitions in the state of actions, and to incorporate process agreement facilities which
allow processes performing an action to reach a consensus concerning action state transitions. A sct
of kernel primitives for atomicity was presented within a framework of processes, actions, and objects.
The generality for message-oriented systems was also discussed. The mechanisms appear especially
important in distributed environments. A distributed operuting system environment was used to
demonstrate one possible approach for actual integration of the primitives. Finally two examples
were presented: a directory system (using some semantic knowledge concerning the actions operating
on the directory) and two processes cooperatively performing an action.

Our work has addressed a fundamental problem confronting operating systems, particuluarly
distributed ones. [t appears that a significant advance in reliability and system organization might
be possible with a well engineered set of orthogonal mechanisms to address atomicity.

4

.

oy
-
]
-
2
o

re




-~ 4

e = -

o Flam 10
by

R0

.
.8

P~

.’I""'

) ‘u' LA

~ Y

KL, '

’

b 1Y

Dy

R
et
s & S8,

. U
-
»
PRERPAARIV)

Ry -
NNy

[
" 'l

U

4

7

A AR

B A ART
%Y ‘t,‘l.".".

J~} ’1"5‘, y -

XY

L/

f f¥

3
AN

A A,
43

RN P &) ':‘.".

« 118

[

Page 198

References

[Allc82)
FANe83]
[Camp74)
[Davi73|
[Davi78]
[Dijk68]

[Fswa76)

{Fisc82]

1Gurc82]

|Gray75]
(Gray78)
[Hoar74]

|Jone79)

|Jens82)

[Koh!81}

(Kung?9)
{Kwon82]}

(Lamp76)

References

Allchin, J.E., and M.S. McKendry, "Object-based Synchronization and Recovery,”
Technical Report GIT-ICS-82/15, Georgia Institute of Technology, September 1982.

Allchin, J.E., "Synchronization and Recovery in Distributed Systems,” Ph.D. Thesis, in
preparation.

Campbell, R, and A. Habermann, “The Specification of Process Synchronization by Path
Expressions,” Lecture Notes in Computer Science 16, Springer-Verlag, 1974.

Davies, C, "Recovery Semantics for a DB/DC system,” Proceedings of the 1973 ACM
National Conference,” pp. 136-141.

Davies, C, "Data Processing Integrity,” from Computing System Reliability,
Cambridge University Press, 1978, pp. 288-354.

Dijkstra, E.W_, "Cooperating Sequential Processes,” in Programming Languages, F
Genuys, ed., Academic Press, New York, 1968.

Eswaran, K., J. Gray, R. lorie, and [. Traiger, "The Notions of Concurrency and
Predicate Locks in a Datubase System,” Communications of the ACM, Vol 19, No. 11,
November 1976.

Fischer, M., and A. Michael, "Sacrificing Serializability to Attain High Availability in
an Unreliable Network,” SIGACT-SIGMOD Symposium on Principles of Database
Systems, March 1982.

Garcia-Molina, H., and G. Wiederhold, “Read-Only Transactions in a Distributed
Database,” ACM Transactions on Database Systems, Vol. T, No. 2, June 1982, pp. 209-
234.

Gray, J., et. al., "Granularity of Locks and Degrees of Consistency in a Shared Data
Base,” IBM Research Report RJ1654, September 1975.

Gray, J., "Notes on Database Operating Systems,” in Lecture Notes in Computer
Science, R. Bayer, et. al., eds., Springer-Verlag, 1978, pp. 393-481.

Hoare, C.A.R., "Monitors: An operating System Structuring Concept,” Communications
ofthe ACM, Vol 17, No. 11, November 1976, pp. 624-633.

Jones, A., "The Object Model: A Conceptual Tool for Structuring Software,” in
Operating Systems: An Advanced Course, R. Bayer, et. al., eds., Springer-Verlag,
New York, 1979, pp. 8-16.

Jensen, E.D., "Decentralized Executive Control of Computers,” Proceedings of the Third
International Conference on Distributed Computing Systems, Miami, 1982.

Kohler, W.H.,, "A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems,” Computing Surveys, Vol. 13, No. 2, June 1981, pp.
149-183.

Kung, H.T., and C.H. Papadimitriou., “"An Optimality Theory of Concurrency Control
for Databases,” Proceedings of the 1979 SIGMOD Conference,” Boston, MA, May, 1979.

Kwong, Y. and D. Wood, "A New Method for Concurrency in B-Trees,” IEEE
Transactions on Software Engineering, Vol SE-8, No. 3, May 1982, pp. 211-222.

Lamport, L., "Towards a Theory of Correctness for Multi-user Data Base Systems,”
Massachusetts Computer Associates, Report No. CA-7610-0712, October 1976.




{ ) References Page 199
N
:j":f‘_' {Lamp81] Lampson, B.W., M.Paul, and H.J. Siegert, Distributed Systems - Architecture and
Implementation, Springer-Verlag, Berlin, 1981.
‘ ' (Lisk82] Liskov B., and R. Scheifler, "Guardians and Actions: Linguistic Support for Robust
Distributed Programs,” ACM Symposium on Principles of Programming Languages,
: January 1982, pp. 7-19.
::':-j' {Lome77]  Lomet, D.B., "Process Structuring, Synchronization, and Recovery using Atomic
L Actions,” Proceeding of an ACM Conference on Language Design for Reliable Software,
) SIGPLAN Notices 12, No. 3, March 1977, pp. 128-137.
:::'_-':- (Lync83] Lynch, N., "Concurrency Control for Resilient Nested Transactions,” SIGACT .
\. SIGMOD Conference on the Principles of Database Systems, March 1983.
‘a {McKe83] McKendry, M.S.,J E. Allchin, and W.C. Thibault, “Architecture for a Global Operating
ot System,” to appear IEEE INFOCOM 83, April 1983.
A (Moha82] Mohan C., D. Fussell, and A. Silberschatz, “Compatibility and Commutativity in Non- - ‘.?
. -; Two-Phase Locking Protocols,” SIGACT - SIGMOD Conference on the Principles of ."-;'.:-:;_-‘
$'- N Database Systems, Los Angeles, Ca., March 1982. R
::' A [Moss81]  Moss, J., "Nested Transactions: An Approach to Rcliable Distributed Computing,” '_:?:_*_::::::
LA Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science, Cambridge, -‘._]
| MA., 1981. b
::-::', [Papa79!  Papadimitriou, C., "Serializability of Concurrent Updates,” Journal of the ACM, Vol. '_ f:ﬁ
2% 26, No. 4, October 1979, pp. 631-653. ]
" e
\'{'-&.j |Rand78)  Randell, B., P.Lee, and P. Treleaven, "Reliability Issues in Computing System Design,” -.".{
52 Computing Surveys, Vol. 10, No. 2, June 1978, pp. 123-165. AIAD
‘ | Reed 78] Reed D., "Naming and Synchronization in a Decentralized Computer System,” Ph.D. 4
2NN dissertation; Tech. Rep. TR-205, M.L.T. Lab for Computer Science, September 1978.
'AASAS
] ‘;j,.: fRuss80} Russel, D.L., "State Restoration in Systems of Communicating Processes,” [EEE
.r’:i‘ Transactions on Software Engineering, Vol SE-6, No. 2, March 1980, pp. 183-194.
' .” (Shri78| Shrivastava, S.K., and J.P. Banatre, “"Reliable Resource Allocation between Unreliable

Processes,” IEEE Transactions on Software Enginerring, Vol SE-3, No. 3, May 1978, pp.

230-241. i
::f [Spec81]  Spector, A., "Multiprocessing Architectures for Local Computer Networks,” Ph.D. :;\::-
- Thesis, Stanford University, August 1981. RO
, [Svob81]  Svobodova, L., "A Reliable Object-oriented Data Repository for a Distributed :,“-}\
N Computer,”, Proceedings of the Eighth Symposium on Operating Systems Principles, _:_f"f‘_
e December 1981, pp. 47-58. S
> ! - -
S
b
T
u'\":'
e
o
ALY
Y
or!
..,:::
o Pt
oy
O
Pa
N

L )
s
u.}‘
.

l.l
4 h .

W el

T

o
»
)



T, T T R T Y Y W w I w Y g

L T P T T T ™ >
- T TaYe . " '-'.‘ - - - .~ . ~ . -t .

..............

- vy
. ‘. oS
a'. IR P
. LU
E AL,

. .
B .

MISSION
of
Rome Awr Development Center

RADC plans and executes reseanch, development, test and
delected acquisition proghams in support 0§ Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening suppont within areas 0f technical competence
45 provided to ESD Program Offices (P0s) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and contrhol, sur-
veillance of ground and aerospace obfects, intelligence data
collection and handling, <information system technology,
Lonospheric propagation, solid state sclences, microwave
physics and electronic neliability, maintainability and
compatibility.

"
. . . . .» ,
j SN AT YR IR WU N

........
.................
...............

PO R W Y

"
. L . .
* 1]
SN
. . . . .
I DU VIS DRI L R I RPN )

. g

. . . PR

¢ P
[ L

o I' . 'A N 'r [ s
L . L Y . . .
' ' . . . . . .
S .'-'.‘.'. . S
. ot ," o . \ ". :
ST ATIY BNV TR Y ¥ S S A P VIS O

PPN
.

«




Al Ban aaet mes J0stt i et ey S as Snse Bse Sade i At Jiet Sute A tuts S s |

i
13
L&

T -

L ———




